cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 53 results. Next

A078375 Smallest prime factor of numbers which can be written as sum of a positive square and a positive cube.

Original entry on oeis.org

2, 5, 3, 2, 2, 17, 2, 2, 2, 31, 3, 2, 37, 43, 2, 2, 2, 3, 3, 5, 2, 2, 73, 2, 2, 2, 89, 7, 2, 101, 2, 113, 2, 2, 127, 2, 3, 2, 3, 5, 2, 2, 2, 7, 2, 2, 3, 2, 3, 5, 3, 2, 197, 2, 2, 2, 7, 2, 223, 3, 2, 2, 233, 241, 2, 2, 257, 2, 2, 5, 269, 2, 283, 17, 2, 2, 3, 2, 2, 3, 5, 2, 337, 2, 347, 2, 3, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[1, 1]] & /@ Select[Range[300], Length[Reduce[a^2 + b^3 == # && a > 0 && b > 0, {a, b}, Integers]] > 0 &] (* Amiram Eldar, Mar 27 2025 *)

Formula

a(n) = A020639(A055394(n)).

A078376 Greatest prime factor of numbers which can be written as sum of a positive square and a positive cube.

Original entry on oeis.org

2, 5, 3, 5, 3, 17, 3, 13, 7, 31, 11, 3, 37, 43, 11, 5, 13, 19, 7, 13, 17, 3, 73, 19, 5, 41, 89, 13, 5, 101, 3, 113, 61, 7, 127, 2, 43, 67, 47, 29, 37, 5, 19, 23, 41, 17, 19, 29, 59, 37, 7, 7, 197, 17, 103, 13, 31, 11, 223, 5, 113, 29, 233, 241, 41, 7, 257, 13, 11, 53, 269, 7
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[-1, 1]] & /@ Select[Range[300], Length[Reduce[a^2 + b^3 == # && a > 0 && b > 0, {a, b}, Integers]] > 0 &] (* Amiram Eldar, Mar 27 2025 *)

Formula

a(n) = A006530(A055394(n)).

A078380 Maximum exponent in prime factorization of numbers which can be written as sum of a positive square and a positive cube.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 3, 1, 2, 4, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 7, 1, 1, 1, 1, 2, 2, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 3, 2, 6, 1, 2, 2, 1, 3, 1, 2, 3, 5, 1, 1, 3, 1, 4, 2, 1, 1, 1, 2, 3, 1, 1, 3, 2, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Max[FactorInteger[#][[;; , 2]]] & /@ Select[Range[300], Length[Reduce[a^2 + b^3 == # && a > 0 && b > 0, {a, b}, Integers]] > 0 &] (* Amiram Eldar, Mar 27 2025 *)

Formula

a(n) = A051903(A055394(n)).

A078381 Number of divisors of numbers which can be written as sum of a positive square and a positive cube.

Original entry on oeis.org

2, 2, 3, 4, 6, 2, 8, 4, 6, 2, 4, 9, 2, 2, 6, 6, 6, 4, 6, 4, 6, 12, 2, 6, 10, 4, 2, 4, 9, 2, 12, 2, 4, 12, 2, 8, 4, 4, 4, 4, 6, 12, 8, 4, 6, 8, 6, 8, 4, 4, 8, 9, 2, 12, 4, 10, 4, 12, 2, 9, 4, 8, 2, 2, 8, 18, 2, 12, 16, 4, 2, 16, 2, 3, 8, 12, 8, 6, 14, 4, 6, 6, 2, 8, 2, 12, 8, 12, 2, 2, 24, 4, 10, 6, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[200], Length[Reduce[a^2 + b^3 == # && a > 0 && b > 0, {a, b}, Integers]] > 0 &]] (* Amiram Eldar, Mar 27 2025 *)

Formula

a(n) = A000005(A055394(n)).

A078387 Moebius's mu of numbers which can be written as sum of a positive square and a positive cube.

Original entry on oeis.org

-1, -1, 0, 1, 0, -1, 0, 1, 0, -1, 1, 0, -1, -1, 0, 0, 0, 1, 0, 1, 0, 0, -1, 0, 0, 1, -1, 1, 0, -1, 0, -1, 1, 0, -1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, -1, 0, -1, 1, 1, 0, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, -1, -1, 0, -1, 0, 0, 1, -1, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, -1, 0, -1, 0, 0, 0, -1, -1, 0, 1, 0, 0, -1, 1, -1
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    MoebiusMu[Select[Range[200], Length[Reduce[a^2 + b^3 == # && a > 0 && b > 0, {a, b}, Integers]] > 0 &]] (* Amiram Eldar, Mar 27 2025 *)

Formula

a(n) = A008683(A055394(n)).

A078390 Composite numbers which can be written as sum of a positive square and a positive cube.

Original entry on oeis.org

9, 10, 12, 24, 26, 28, 33, 36, 44, 50, 52, 57, 63, 65, 68, 72, 76, 80, 82, 91, 100, 108, 122, 126, 128, 129, 134, 141, 145, 148, 150, 152, 161, 164, 170, 171, 174, 177, 185, 189, 196, 204, 206, 208, 217, 220, 225, 226, 232, 246, 252, 260, 264, 265, 280, 289
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Examples

			A002808(74) = 100 = 6^2 + 4^3, therefore 100 is a term.
		

Crossrefs

Intersection of A002808 and A055394.
Cf. A066649.

Programs

  • Mathematica
    Select[Range[300], CompositeQ[#] && Length[Reduce[a^2 + b^3 == # && a > 0 && b > 0, {a, b}, Integers]] > 0 &] (* Amiram Eldar, Mar 27 2025 *)

A078393 Squarefree numbers which can be written as sum of a positive square and a positive cube.

Original entry on oeis.org

2, 5, 10, 17, 26, 31, 33, 37, 43, 57, 65, 73, 82, 89, 91, 101, 113, 122, 127, 129, 134, 141, 145, 161, 170, 174, 177, 185, 197, 206, 217, 223, 226, 233, 241, 246, 257, 265, 269, 283, 290, 321, 337, 347, 353, 359, 362, 379, 381, 385, 401, 407, 427, 442, 443
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Examples

			7*13 = 91 = 8^2 + 3^3, therefore 91 is a term.
		

Crossrefs

Intersection of A005117 and A055394.
Cf. A066649.

Programs

  • Mathematica
    spspcQ[{a_,b_}]:=AllTrue[{Sqrt[a],Surd[b,3]},IntegerQ]||AllTrue[{Sqrt[ b],Surd[ a,3]},IntegerQ]; Select[Range[500],SquareFreeQ[#] && Length[ Select[IntegerPartitions[#,{2}],spspcQ]]>0&] (* Harvey P. Dale, Jan 13 2019 *)

A122956 Least semiprime composed of a square and a positive cube in n different ways.

Original entry on oeis.org

4, 9, 65, 11665, 27289, 3030569, 6808609, 1632201497, 10553247449, 843404126561, 2101614761177, 62537392166201, 100301302204489
Offset: 0

Views

Author

Keywords

Comments

a(n) for n>0 must be odd.

Examples

			a(0)=4 since it is the first semiprime (2*2) not of the form a^2+b^3.
a(1) = 9 = 1^2 + 2^3 = 3*3.
a(2) = 65 = 1^2 + 4^3 = 8^2 + 1^3 = 5*13.
a(3) = 11665 = 108^2 + 1^3 = 107^2 + 6^3 = 87^2 + 16^3 = 5*2333.
a(4) = 27289 = 165^2 + 4^3 = 129^2 + 22^3 = 108^2 + 25^2 = 17^2 + 30^3 = 29*941.
a(5) = 3030569 = 1671^2 + 62^3 = 1587^2 + 80^3 = 1038^2 + 125^3 = 913^2 + 130^3 = 409^2 + 142^3 = 103*29423.
a(6) = 6808609 = 2609^2 + 12^3 = 2445^2 + 94^3 = 1853^2 + 150^3 = 1647^2 + 160^3 = 1522^2 + 165^3 = 1124^2 + 177^3 = 103*66103.
a(7) = 1632201497 = 38425^2 + 538^3 = 38202^2 + 557^3 = 36741^2 + 656^3 = 26177^2 + 982^3 = 18555^2 + 1088^3 = 13477^2 + 1132^3 = 1292^2 + 1177^3. [From _Donovan Johnson_, Aug 31 2008]
Contribution from _Donovan Johnson_, Mar 01 2010: (Start)
a(8) = 10553247449 = 102729^2 + 2^3 = 102393^2 + 410^3 = 101551^2 + 622^3 = 101371^2 + 652^3 = 80357^2 + 1600^3 = 63768^2 + 1865^3 = 13893^2 + 2180^3 = 4581^2 + 2192^3.
a(9) = 843404126561 = 917123^2 + 1318^3 = 902037^2 + 3098^3 = 866353^2 + 4528^3 = 833585^2 + 5296^3 = 634581^2 + 7610^3 = 521169^2 + 8300^3 = 478831^2 + 8500^3 = 259331^2 + 9190^3 = 23805^2 + 9446^3.
a(10) = 2101614761177 = 1449189^2 + 1136^3 = 1448961^2 + 1286^3 = 1448167^2 + 1642^3 = 1421577^2 + 4322^3 = 1315794^2 + 7181^3 = 1271813^2 + 7852^3 = 1119559^2 + 9466^3 = 1085568^2 + 9737^3 = 668475^2 + 11828^3 = 438431^2 + 12406^3.
a(11) = 62537392166201 = 7908053^2 + 448^3 = 7906101^2 + 3140^3 = 7863087^2 + 8918^3 = 7778399^2 + 12670^3 = 7537351^2 + 17890^3 = 7205845^2 + 21976^3 = 6649899^2 + 26360^3 = 5818649^2 + 30610^3 = 5684351^2 + 31150^3 = 2900985^2 + 37826^3 = 1009845^2 + 39476^3.
a(12) = 100301302204489 = 10013433^2 + 3190^3 = 9966435^2 + 9904^3 = 9922058^2 + 12285^3 = 9879183^2 + 13930^3 = 9821564^2 + 15657^3 = 9740881^2 + 17562^3 = 7540415^2 + 35154^3 = 2704995^2 + 45304^3 = 2667144^2 + 45337^3 = 1300067^2 + 46200^3 = 614915^2 + 46404^3 = 54519^2 + 46462^3.
(End)
		

Crossrefs

Programs

  • Mathematica
    semiPrimeQ[x_] := Plus @@ Last /@ FactorInteger@x == 2; t = Table[0, {10}]; Do[ If[ semiPrimeQ@n, c = Count[IntegerQ /@ Sqrt[n - Range@Floor[n^(1/3)]^3], True]; If[ t[[c + 1]] == 0, t[[c + 1]] = n; Print[{c, n}] ]], {n, 731000000}]; t

Extensions

a(7) from Donovan Johnson, Aug 31 2008
a(8)-a(12) from Donovan Johnson, Mar 01 2010

A123048 Semiprimes that are the sum of a positive square and a positive cube.

Original entry on oeis.org

9, 10, 26, 33, 57, 65, 82, 91, 122, 129, 134, 141, 145, 161, 177, 185, 206, 217, 226, 265, 289, 321, 362, 381, 407, 427, 485, 505, 511, 537, 566, 626, 633, 667, 681, 689, 703, 737, 745, 778, 785, 793, 841, 842, 849, 898, 901, 905, 985, 1018, 1041, 1057, 1081
Offset: 1

Views

Author

Jonathan Vos Post, Sep 25 2006

Keywords

Comments

Semiprime analog of A066649, Primes of the form a^2 + b^3 with a, b > 0.

Examples

			a(1) = 9 = 2^3 + 1^2 = 3*3.
a(2) = 10 = 3^2 + 1^3 = 2*5.
a(3) = 26 = 5^2 + 1^3 = 2*13.
a(4) = 33 = 5^2 + 2^3 = 3*11.
a(5) = 57 = 7^2 + 2^3 = 3*19.
a(6) = 65 = 1^2 + 4^3 = 8^2 + 1^3 = 5*13.
		

Crossrefs

Programs

  • Mathematica
    Select[ Union[ Plus @@@ Tuples[{Range[4^3]^2, Range[4^2]^3}]], # < 1082 && Plus @@ Last /@ FactorInteger[#] == 2 &] (* Giovanni Resta, Jun 12 2016 *)

Formula

A001358 INTERSECTION A055394.

Extensions

More terms from Robert G. Wilson v, Sep 29 2006

A173795 Smallest prime that is the sum of a square and a positive cube in n different ways.

Original entry on oeis.org

3, 2, 17, 2089, 65537, 3193361, 445341529, 4190216689, 25140740257, 813368268793, 333413867957257, 1057543811051633, 1448734752622601
Offset: 0

Views

Author

Donovan Johnson, Mar 01 2010

Keywords

Comments

From Kevin T. Acres Sep 22 2012 (Start)
Noam D. Elkies has determined, after an exhaustive search, to 7.5 * 10^15, that 1057543811051633 and 1448734752622601 are the lowest primes such that they are sums of a square and a positive cube in 11 and 12 different ways respectively.
107122676734733201 remains a potential, but unproven, candidate for n = 13 and 14.
107122676734733201 = 18076^3 + 327286985^2 = 56276^3 + 327023625^2 = 83413^3 + 326408198^2 = 128726^3 + 324021045^2 = 180440^3 + 318194601^2 = 319330^3 + 273056899^2 = 339826^3 + 260535965^2 = 344065^3 + 257666476^2 = 385333^3 + 223400642^2 = 403688^3 + 203312727^2 = 415601^3 + 187984920^2 = 447428^3 + 132481143^2 = 457750^3 + 105867851^2 = 460826^3 + 96236115^2
(End)

Examples

			a(0) = 3 (smallest prime not of the form a^2 + b^3).
a(1) = 2 = 1^2 + 1^3.
a(2) = 17 = 4^2 + 1^3 = 3^2 + 2^3.
a(3) = 2089 = 45^2 + 4^3 = 33^2 + 10^3 = 19^2 + 12^3.
a(4) = 65537 = 256^2 + 1^3 = 255^2 + 8^3 = 219^2 + 26^3 = 122^2 + 37^3.
a(5) = 3193361 = 1769^2 + 40^3 = 1606^2 + 85^3 = 1481^2 + 100^3 = 1047^2 + 128^3 = 285^2 + 146^3.
a(6) = 445341529 = 21023^2 + 150^3 = 20955^2 + 184^3 = 20898^2 + 205^3 = 20773^2 + 240^3 = 11195^2 + 684^3 = 2523^2 + 760^3.
a(7) = 4190216689 = 64729^2 + 72^3 = 64005^2 + 454^3 = 61219^2 + 762^3 = 42867^2 + 1330^3 = 36008^2 + 1425^3 = 20915^2 + 1554^3 = 17479^2 + 1572^3.
a(8) = 25140740257 = 155951^2 + 936^3 = 155440^2 + 993^3 = 153739^2 + 1146^3 = 151371^2 + 1306^3 = 126172^2 + 2097^3 = 121809^2 + 2176^3 = 116477^2 + 2262^3 = 38097^2 + 2872^3.
a(9) = 813368268793 = 901707^2 + 664^3 = 900233^2 + 1434^3 = 808084^2 + 5433^3 = 693429^2 + 6928^3 = 610741^2 + 7608^3 = 432210^2 + 8557^3 = 392373^2 + 8704^3 = 379349^2 + 8748^3 = 275817^2 + 9034^3.
a(10) = 333413867957257 = 18202887^2 + 12742^3 = 18190720^2 + 13593^3 = 16205565^2 + 41368^3 = 15621373^2 + 44712^3 = 14905630^2 + 48093^3 = 12187395^2 + 56968^3 = 11330919^2 + 58966^3 = 10486383^2 + 60682^3 = 9216035^2 + 62868^3 = 3854589^2 + 68296^3.
a(11) = 1057543811051633 = 7534^3 + 32513323^2 = 33184^3 + 31953127^2 = 46552^3 + 30929945^2 = 57377^3 + 29472900^2 = 69374^3 + 26901003^2 = 87989^3 + 19399158^2 = 94369^3 + 14735668^2 = 94874^3 + 14267997^2 = 95114^3 + 14038467^2 = 97952^3 + 10850535^2 = 101828^3 + 1302009^2
a(12) = 1448734752622601 = 30668^3 + 37681437^2 = 42326^3 + 37052775^2 = 49498^3 + 36434353^2 = 55000^3 + 35810051^2 = 68585^3 + 33557676^2 = 68890^3 + 33493199^2 = 78020^3 + 31206051^2 = 85838^3 + 28570377^2 = 88258^3 + 27590783^2 = 94820^3 + 24417699^2 = 105368^3 + 16700163^2 = 111901^3 + 6894130^2
		

Crossrefs

Extensions

More terms (n=11 and 12) from Noam D Elkies.
Outdated comments removed by Kevin T. Acres, Sep 22 2012
Previous Showing 31-40 of 53 results. Next