cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 60 results. Next

A257643 Carmichael numbers k such that k-1 is squarefree.

Original entry on oeis.org

139952671, 74689102411, 121254376891, 187054437571, 231440115271, 236359158267, 303008129971, 306252926071, 380574791611, 426951670531, 556303918171, 639109148371, 660950414671, 1101375141511, 1483826843731, 1487491483171, 1861175569891, 2794268624071
Offset: 1

Views

Author

Thomas Ordowski, Nov 05 2015

Keywords

Comments

If k is a Carmichael number with k-1 squarefree, then gcd(phi(k),k-1) = lambda(k), i.e., Carmichael lambda function A002322.

Crossrefs

Subsequence of A185321.

Programs

  • PARI
    t(n) = my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1;
    is(n) = n%2 && !isprime(n) && t(n) && n>1;
    isok(n) = is(n) && issquarefree(n-1); \\ Altug Alkan, Nov 06 2015
    
  • PARI
    is(n) = my(f=factor(n)); for(i=1, #f~, if(f[i,1]%4<3 || f[i, 2]>1 || (n-1)%(f[i, 1]-1), return(0))); !isprime(n) && issquarefree(n-1)
    is(n) = n%2 && !isprime(n) && t(n) && n>1 \\ Charles R Greathouse IV, Nov 09 2015

A277389 Numbers k such that lambda(k)^3 divides (k-1)^2, where lambda(k) = A002322(k).

Original entry on oeis.org

1, 2, 1729, 19683001, 367804801, 631071001, 2064236401, 2320690177, 24899816449, 40017045601, 110592000001, 137299665601, 432081216001, 479534887801, 760355883001, 1111195454401, 3176523000001, 3495866888449, 3837165696001, 8571867768001, 14373832968001
Offset: 1

Views

Author

Thomas Ordowski, Oct 12 2016

Keywords

Comments

Carmichael numbers are composite numbers n such that k = 1 (mod lambda(k)); equivalently, lambda(k)^2 divides (k-1)^2. As a result, all composite terms of the sequence are Carmichael numbers A002997. But there are no primes in this sequence except for 2 (since lambda(p) = p-1 and (p-1)^3 > (p-1)^2 for p > 2) and so all terms in this sequence other than 1 and 2 are Carmichael numbers. - Charles R Greathouse IV, Oct 15 2016
Is this sequence infinite?

Crossrefs

Programs

  • PARI
    isok(n) = ((n-1)^2 % (lcm(znstar(n)[2])^3)) == 0; \\ Michel Marcus, Oct 12 2016

Extensions

a(4) from Michel Marcus, Oct 12 2016
a(5)-a(6) from Michel Marcus, Oct 13 2016
More terms from Robert Israel, Oct 13 2016

A290692 Carmichael numbers of the form p - 2 where p is a prime number.

Original entry on oeis.org

561, 2465, 656601, 1909001, 174352641, 230996949, 275283401, 939947009, 1534274841, 3264820001, 5860426881, 6025532241, 25536531021, 36709177121, 53388707681, 54519328481, 56222911361, 101536702401, 105528976961, 180481509681, 196866607601, 239862350001, 329245587161, 347469383801, 347511324161
Offset: 1

Views

Author

Altug Alkan, Aug 09 2017

Keywords

Comments

Rotkiewicz mentioned the first six terms of this sequence at the end of page 59 of his article (Links section). But his list includes 2821 and 46657 (2823 = 3 * 941 and 46659 = 3 * 103 * 151), which should not be there.
Carmichael numbers of the form p + 2 where p is a prime number are 1105, 2821, 6601, 29341, 41041, 52633, ... (see also A272754 for corresponding prime numbers).

Crossrefs

Programs

  • Maple
    # Using data file from Richard Pinch
    infile:= "carmichael-16": Res:= NULL;
    do
      S:= readline(infile);
      if S = 0 then break fi;
      L:= sscanf(S,"%d");
      if nops(L) <> 1 then break fi;
      if isprime(L[1]+2) then Res:= Res, L[1]; fi
    od:
    Res; # Robert Israel, Jun 03 2019
  • Mathematica
    Cases[Range[1, 10^7, 2], n_ /; And[Mod[n, CarmichaelLambda@ n] == 1, ! PrimeQ@ n, PrimeQ[n + 2]]] (* Michael De Vlieger, Aug 09 2017, after Artur Jasinski at A002997 *)
  • PARI
    isA002997(n) = {my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1}
    isok(n) = isprime(n+2) && isA002997(n)

Extensions

More terms from Robert Israel, Jun 03 2019

A290805 Least Carmichael number whose Euler totient function value is an n-th power.

Original entry on oeis.org

561, 1729, 63973, 1729, 367939585, 63973, 294409, 232289960085001, 11570858964626401, 79939760257, 509033161, 611559276803883001, 13079177569, 27685385948423487745, 26979791457662785, 287290964059686145, 13046319747121261903830001, 7847507962539316696504321, 993942550111105, 6280552422566791778305, 24283361157780097, 759608966313690599499265, 6657107145346817668085761, 283219223388059484626764342346640001
Offset: 1

Views

Author

Amiram Eldar, Aug 11 2017

Keywords

Comments

Banks proved that for each positive integer N there are an infinite number of Carmichael numbers whose Euler totient function value is an N-th power. Therefore this sequence is infinite.
For any n > 26, a(n) > 10^22. - Amiram Eldar, Apr 20 2024

Examples

			phi(1729) = 36^2 = 6^4 while phi(561) and phi(1105) are not perfect powers, therefore a(2) = a(4) = 1729.
		

Crossrefs

Extensions

Terms up to a(13) were calculated using Pinch's tables of Carmichael numbers.
a(1) prepended by David A. Corneth, Aug 11 2017
a(14)-a(16), a(19)-a(21), a(25)-a(26) calculated using data from Claude Goutier and added by Amiram Eldar, Apr 20 2024
a(17)-a(18), a(22)-a(24) from Max Alekseyev, Apr 25 2024
Edited by Max Alekseyev, Dec 04 2024

A291637 Carmichael numbers (A002997) that are super-Poulet numbers (A050217).

Original entry on oeis.org

294409, 1299963601, 4215885697, 4562359201, 7629221377, 13079177569, 19742849041, 45983665729, 65700513721, 147523256371, 168003672409, 227959335001, 459814831561, 582561482161, 1042789205881, 1297472175451, 1544001719761, 2718557844481, 3253891093249, 4116931056001, 4226818060921, 4406163138721, 4764162536641, 4790779641001, 5419967134849, 7298963852041, 8470346587201
Offset: 1

Views

Author

Max Alekseyev and Thomas Ordowski, Aug 28 2017

Keywords

Comments

Problem: are there infinitely many such numbers?
From Daniel Suteu, Sep 17 2020: (Start)
If we consider f(n) to be the smallest number in the sequence with n prime factors, then we have:
f(3) = 294409,
f(4) = 3018694485093841,
f(5) <= 521635331852681575100906881,
f(6) <= 2835402730651853232634509813787097410561,
f(7) <= 165784025660216242122027716057592895796242004385542265601. (End)

Crossrefs

Intersection of A178997 and A002997.

A329538 Odd composite numbers k such that A111076(k)^((k-1)/2) == -1 (mod k).

Original entry on oeis.org

29341, 1152271, 5481451, 14913991, 15247621, 36765901, 133800661, 178482151, 299736181, 579606301, 652969351, 702683101, 739444021, 743404663, 775368901, 3215031751, 4340265931, 5871134179, 8657319259, 9293756581, 12191597551, 13734086221, 14386156093, 19331388805
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Nov 16 2019

Keywords

Comments

Carmichael numbers k such that A111076(k)^((k-1)/2) == -1 (mod k).
Note that if p is an odd prime, then A111076(p)^((p-1)/2) == -1 (mod p).
Max Alekseyev proved (in a letter to the second author) that all these numbers have an odd number of prime factors, showing that if k is a term, then k is a Carmichael number m such that p-1 does not divide (m-1)/2 for every prime p|m (the numbers m form the supersequence A329799).
There are 6469 terms k of this sequence below 2^64:
4240 with 3 prime factors, least is 29341 = 13*37*61,
1790 with 5 prime factors, least is 4340265931 = 19*43*107*131*379,
437 with 7 prime factors, least is 37038179683765 = 5*13*29*37*317*757*2213,
2 with 9 prime factors, least is 1025735495681200591 = 7*19*31*67*79*163*199*271*5347.

Crossrefs

Subsequence of A262043.

Programs

  • Mathematica
    f[1, lam_] = 1; f[n_, lam_] := If[n < 5, n - 1, Module[{k = 1}, While[GCD[k, n] > 1 || MultiplicativeOrder[k, n] < lam, k++]; k]]; aQ[n_] := CompositeQ[n] && Divisible[n - 1 , (lam = CarmichaelLambda[n])] && PowerMod[f[n, lam], (n - 1)/2, n] == n - 1; Select[Range[1, 6*10^6, 2], aQ] (* after the Charles R Greathouse IV at A111076 *)

A329948 Carmichael numbers m that have at least 3 prime factors p such that p+1 | m+1.

Original entry on oeis.org

9857524690572481, 33439671284716801, 96653613831890401, 270136961300544031, 528096456788419441, 650643395658753601, 710238404427321601, 1822922951416158241, 4011563714063821201, 4525693104167627041, 4631812281009523441, 7049793086137296001, 8605736094003523201, 10449416165574628801, 11175581620177915681, 12746447178170148001, 12769123623410580481, 17705945296667070001
Offset: 1

Views

Author

Daniel Suteu, Nov 25 2019

Keywords

Comments

It is not known whether any Carmichael number (A002997) is also Lucas-Carmichael number (A006972). If such a number exists, then it would be a term of this sequence.

Examples

			m = 9857524690572481 is a term because it is a Carmichael number and it has at least 3 prime factors p, {13, 61, 433}, such that p+1 | m+1.
		

Crossrefs

Programs

A338443 Carmichael numbers with 11 prime factors.

Original entry on oeis.org

60977817398996785, 105083995864811041, 107473646345582881, 132819104923908481, 145671955835893201, 161802381510126721, 165167398073764801, 206063729626916161, 263076030916096321, 292433912163313921, 292561243007134465, 337365329710615921, 388219799621120545
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Oct 28 2020

Keywords

Examples

			60977817398996785 = 5*7*17*19*23*37*53*73*79*89*233 and 4, 6, 16, 18, 22, 36, 52, 72, 78, 88, 232 all divide 60977817398996784.
		

Crossrefs

Cf. A002997 (Carmichael numbers).
Cf. A006931 (Least Carmichael number with n prime factors).
Cf. A299710 (Number of terms less than 10^n).
Cf. A087788, A074379, A112428, A112429, A112430, A112431, A112432, A338442 (Carmichael numbers with 3-10 prime factors).

Programs

  • PARI
    is(n)={omega(n)==11&&is_A002997(n)}

Formula

Equals A002997 intersect A069272.

A346569 Carmichael numbers (A002997) k such that A003961(k) is also a Carmichael number.

Original entry on oeis.org

938531360353681, 6178246534322281, 518705522457928921, 7019247908645553241, 16242056799655920481, 94812683932464811561, 94986212971063089241, 408133613144935002601, 418441276466266605481, 453648717063017803081, 556606627235843071681, 1140359076998537247001
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2021

Keywords

Comments

Each of the first 17 terms has 3 distinct prime divisors. [updated Apr 22 2024]
a(6) <= 94812683932464811561. A term with 4 prime factors is 9584146525723596902470058833132261. - Daniel Suteu, Jul 24 2021

Examples

			938531360353681 = 53881 * 107761 * 161641 is a term since it is a Carmichael number, and A003961(938531360353681) = 53887 * 107773 * 161659 = 938844932257009 is also a Carmichael number.
		

Crossrefs

Subsequence of A346568.

Extensions

a(6) verified and a(7)-a(13) calculated using using data from Claude Goutier by Amiram Eldar, Apr 22 2024

A367231 Carmichael numbers k such that the multiplicative order of 2 modulo k is odd.

Original entry on oeis.org

15841, 52633, 5049001, 68154001, 104852881, 238244041, 382536001, 3215031751, 3863326897, 7211236033, 8214723001, 15462960481, 22008493921, 23000028481, 29392867201, 31708772257, 41217865921, 53125756201, 60518537641, 74190097801, 77874636001, 83828294551, 103387371361
Offset: 1

Views

Author

Amiram Eldar, Nov 11 2023

Keywords

Comments

These Carmichael numbers seem to be relatively rare: among the 4279356 Carmichael numbers below 2^64 only 3097 are terms of this sequence.

Crossrefs

Intersection of A002997 and A036259.
Subsequence of A367230.

Programs

  • Mathematica
    Select[2*Range[3*10^6] + 1, Mod[#, CarmichaelLambda[#]] == 1 && CompositeQ[#] && OddQ[MultiplicativeOrder[2, #]] &]
  • PARI
    is(n) = n > 1 && n % 2 && !isprime(n) && n % lcm(znstar(n)[2]) == 1 && znorder(Mod(2, n)) % 2;
Previous Showing 31-40 of 60 results. Next