cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A181332 Triangle read by rows: T(n,k) is the number of 2-compositions of n having k nonzero entries in the top row. A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 4, 12, 7, 1, 8, 32, 31, 10, 1, 16, 80, 111, 59, 13, 1, 32, 192, 351, 268, 96, 16, 1, 64, 448, 1023, 1037, 530, 142, 19, 1, 128, 1024, 2815, 3598, 2435, 924, 197, 22, 1, 256, 2304, 7423, 11535, 9843, 4923, 1477, 261, 25, 1, 512, 5120, 18943, 34832
Offset: 0

Views

Author

Emeric Deutsch, Oct 13 2010

Keywords

Comments

The sum of entries in row n is A003480(n).
T(n,1) = A001787(n).
T(n,2) = A055580(n-2) (n>=2).
T(n,3) = A055586(n-3) (n>=3).
Sum(k*T(n,k), k>=0) = A054146(n).

Examples

			T(2,1)=4 because we have (1/1), (2/0), (1,0/0,1), and (0,1/1,0) (the 2-compositions are written as (top row / bottom row)).
Triangle starts:
1;
1,1;
2,4,1;
4,12,7,1;
8,32,31,10,1;
16,80,111,59,13,1;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) options operator, arrow: sum(2^j*binomial(k+j, k)*binomial(n-j-2, k-2), j = 0 .. n-k) end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form

Formula

T(n,k) = sum(2^j*binomial(k+j,k)*binomial(n-2-j,k-2), j=0..n-k).
G.f.: G(t,x) = (1-x)^2/(1-3*x+2*x^2-t*x).
The g.f. of column k is x^k/((1-2*x)^(k+1)*(1-x)^(k-1)) (we have a Riordan array).
T(n,k) = 3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), with T(0,0)=T(1,0)=T(1,1)=T(2,2)=1, T(2,0)=2, T(2,1)=4, T(n,k)=0 if k<0 or if k>n. - _Philippe Deléham, Nov 26 2013

A367591 Expansion of 1/((1-x) * (1-3*x)^3).

Original entry on oeis.org

1, 10, 64, 334, 1549, 6652, 27064, 105796, 401041, 1483606, 5380840, 19198306, 67559437, 234963352, 808919632, 2760370984, 9346519297, 31429487170, 105039380080, 349114288150, 1154561484781, 3801030845140, 12462203297224, 40705156945324, 132494756301649
Offset: 0

Views

Author

Seiichi Manyama, Nov 24 2023

Keywords

Crossrefs

Partial sums of A027472.

Programs

  • PARI
    a(n) = ((2*n^2+4*n+3)*3^(n+1)-1)/8;

Formula

a(n) = ((2*n^2+4*n+3) * 3^(n+1) - 1)/8.

A196514 Partial sums of A100381.

Original entry on oeis.org

0, 4, 28, 124, 444, 1404, 4092, 11260, 29692, 75772, 188412, 458748, 1097724, 2588668, 6029308, 13893628, 31719420, 71827452, 161480700, 360710140, 801112060, 1769996284, 3892314108, 8522825724, 18589155324, 40399536124, 87509958652
Offset: 0

Views

Author

R. J. Mathar, Oct 03 2011

Keywords

Comments

Like any sequence with a linear recurrence, this has a Pisano period length modulo any k >= 1. The period lengths for this sequence are (modulo k >= 1) 1, 1, 6, 1, 20, 6, 21, 1, 18, 20, 110, 6, 156, 21, 60, 1, 136, 18, 342, 20, ....

References

  • Jolley, Summation of Series, Dover (1961), eq (53) page 10.

Programs

Formula

G.f.: 4*x / ( (x-1)*(2*x-1)^3 ).
a(n) = (n^2 - n + 2)*2^(n+1) - 4 = 4*A055580(n-1).
a(n) = 7*a(n-1) - 18*a(n-2) + 20*a(n-3) - 8*a(n-4); a(0)=0, a(1)=4, a(2)=28, a(3)=124. - Harvey P. Dale, Jan 12 2016

A367592 Expansion of 1/((1-x) * (1-4*x)^3).

Original entry on oeis.org

1, 13, 109, 749, 4589, 26093, 140781, 730605, 3679725, 18097645, 87303661, 414459373, 1941186029, 8987616749, 41199871469, 187228759533, 844358755821, 3782116386285, 16838816966125, 74563177424365, 328550363440621, 1441256130749933, 6296699479008749
Offset: 0

Views

Author

Seiichi Manyama, Nov 24 2023

Keywords

Crossrefs

Partial sums of A038845.

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x)*(1 - 4*x)^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 04 2025 *)
  • PARI
    a(n) = ((9*n^2+21*n+14)*4^(n+1)-2)/54;

Formula

G.f.: 1/((1-x) * (1-4*x)^3).
a(n) = ((9*n^2+21*n+14) * 4^(n+1) - 2)/54.
a(n) = 13*a(n-1) - 60*a(n-2) + 112*a(n-3) - 64*a(n-4). - Wesley Ivan Hurt, Aug 04 2025
Previous Showing 11-14 of 14 results.