cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A374989 Square root of largest unitary square divisor of n!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 12, 12, 3, 9, 720, 720, 160, 160, 35, 189, 189, 189, 145152, 145152, 7257600, 12800, 275, 275, 136857600, 684288000, 4343625, 17875, 875875, 875875, 125536739328, 125536739328, 15324309, 637, 709689344, 9052160000, 18104320000, 18104320000, 2624375
Offset: 0

Views

Author

Amiram Eldar, Jul 26 2024

Keywords

Comments

Unitary analog of A055772.
a(n) is even if and only if n > 1 and is in A006364.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[EvenQ[e], p^(e/2), 1]; a[0] = a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40, 0]
  • PARI
    a(n) = {my(f = factor(n!)); prod(i = 1, #f~, if(f[i, 2]%2, 1, f[i, 1]^(f[i, 2]/2)));}
    
  • Python
    from math import prod
    from itertools import count, islice
    from collections import Counter
    from sympy import factorint
    def A374989_gen(): # generator of terms
        c = Counter()
        for i in count(0):
            c += Counter(factorint(i))
            yield prod(p**(e>>1) for p, e in c.items() if e&1^1)
    A374989_list = list(islice(A374989_gen(),30)) # Chai Wah Wu, Jul 27 2024

Formula

a(n) = sqrt(A374988(n)).
a(n) = A071974(n!).

A056043 Let k be largest number such that k^2 divides n!; a(n) = k/floor(n/2)!.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 3, 6, 6, 2, 2, 2, 6, 3, 3, 2, 2, 2, 2, 2, 2, 2, 10, 10, 30, 30, 30, 12, 12, 3, 3, 6, 30, 10, 10, 10, 30, 6, 6, 2, 2, 2, 30, 60, 60, 30, 210, 42, 42, 42, 42, 28, 28, 2, 2, 4, 4, 4, 4, 4, 84, 21, 21, 14, 14, 14, 42, 6, 6, 2, 2, 2, 10, 10, 70, 140, 140, 14, 126, 126
Offset: 1

Views

Author

Labos Elemer, Jul 25 2000

Keywords

Examples

			For n = 7, 7! = 5040 = 144*35, so 12 is its largest square-root-divisor, A000188(5040), and it is divisible by 6 = 3!, so a(7) = 12/3! = 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; b[1] = 1; a[n_] := (Times @@ f @@@ FactorInteger[n!]) / Floor[n/2]!; Array[a, 100] (* Amiram Eldar, May 24 2024 *)

Formula

a(n) = A000188(n!)/floor(n/2)! = A055772(n)/A000142(A004526(n)) = A055772(n)/A081123(n). [Corrected by Amiram Eldar, May 24 2024]

A056194 Characteristic cube divisor of n!: a(n) = A056191(n!).

Original entry on oeis.org

1, 1, 1, 8, 8, 1, 1, 8, 8, 1, 1, 27, 27, 216, 1000, 1000, 1000, 125, 125, 1, 9261, 74088, 74088, 343, 343, 2744, 74088, 216, 216, 125, 125, 1000, 35937000, 4492125, 12326391, 12326391, 12326391, 98611128, 8024024008, 125375375125
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e] && e > 1, p^3, 1]; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* Amiram Eldar, Sep 06 2020 *)

Formula

a(n) = A056191(A000142(n)). - Amiram Eldar, Sep 06 2020

A056195 a(n) = n! divided by its characteristic cube divisor A056194.

Original entry on oeis.org

1, 2, 6, 3, 15, 720, 5040, 5040, 45360, 3628800, 39916800, 17740800, 230630400, 403603200, 1307674368, 20922789888, 355687428096, 51218989645824, 973160803270656, 2432902008176640000, 5516784599040000
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Examples

			n = 10, a(10) = 10! because g(10!) = 1.
n = 9, a(9) = 45320 because 9! = 2*2*2*2*2*2*2*3*3*5*7 and g(9!) = 2, so a(9) = 9!/8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e] && e > 1, p^3, 1]; a[n_] := n! / (Times @@ f @@@ FactorInteger[n!]); Array[a, 20] (* Amiram Eldar, Sep 06 2020 *)

Formula

The CCD of n! is the cube of g = A055229(n!) = A055230(n). So a(n) = n!/ggg = L*L*f where L = A000188(n!)/A055229(n!) = A055772(n)/A055230(n) and f = A055231(n!) = A055773(n).

A105350 Largest squared factorial dividing n!.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 36, 36, 576, 576, 518400, 518400, 518400, 518400, 25401600, 25401600, 1625702400, 1625702400, 131681894400, 131681894400, 13168189440000, 13168189440000, 1593350922240000, 1593350922240000, 229442532802560000, 229442532802560000
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 01 2005

Keywords

Comments

a(n) = A001044(A056039(n)) = A056038(n)^2.
Whenever n > 1 is not in A056067, a(n) = A180064(n). - Andrey Zabolotskiy, Oct 19 2023

Crossrefs

Programs

  • Mathematica
    a[n_] := (For[k = 1, Divisible[n!, k!^2], k++]; (k-1)!^2)
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 07 2018 *)

Extensions

Data and offset corrected by Jean-François Alcover, Aug 07 2018
Edited by Andrey Zabolotskiy, Oct 18 2023

A055928 Sum of square divisors of n! = sum of squares of divisors of the square root of largest square dividing n!.

Original entry on oeis.org

1, 1, 1, 5, 5, 210, 210, 850, 7735, 806806, 806806, 3229590, 3229590, 161479500, 1455090000, 23286770000, 23286770000, 838446909300, 838446909300, 83973923013750, 83973923013750, 10244818607677500, 10244818607677500
Offset: 1

Views

Author

Labos Elemer, Jul 21 2000

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p^2-1) , (p^(e+2)-1)/(p^2-1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n!]); Array[a, 23] (* Amiram Eldar, Aug 01 2019 *)

Formula

a(n) = A035316(n!) = A001157(A055772(n)) = A001157(A000188(n!)).

A056596 Number of nonsquare divisors of n!.

Original entry on oeis.org

0, 1, 3, 6, 14, 24, 54, 88, 148, 240, 510, 756, 1548, 2520, 3936, 5248, 10624, 14508, 29196, 40740, 60500, 95400, 191400, 242016, 338880, 529920, 674688, 912912, 1830192, 2327424, 4660224, 5523456, 7858176, 12152064, 16406592, 19576080
Offset: 1

Views

Author

Labos Elemer, Jul 21 2000

Keywords

Crossrefs

Programs

Formula

a(n) = d(n!) - A046951(n!)
a(n) = A027423(n) - A055993(n). - Amiram Eldar, Jul 16 2019

A056628 a(n) = A056623(n!).

Original entry on oeis.org

1, 1, 1, 1, 1, 144, 144, 144, 1296, 518400, 518400, 230400, 230400, 2822400, 9144576, 146313216, 146313216, 21069103104, 21069103104, 52672757760000, 119439360000, 3613040640000, 3613040640000, 18730002677760000, 468250066944000000, 19783565328384000000, 19783565328384000000
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

Previous name "Largest unitary square divisor of n!" was incorrect. See A374988 for the correct sequence with this name. - Amiram Eldar, Jul 26 2024

Examples

			a(12) = A056623(12!) = A008833(12!)/A055229(12!)^2 = 2073600/3^2 = 230400.
		

Crossrefs

Programs

Formula

a(n) = A055071(n)/A055230(n)^2 = A008833(n!)/A055229(n!)^2.
a(n) = A056623(n!). - Michel Marcus, Aug 16 2020
a(n) = A056627(n)^2. - Amiram Eldar, Jul 08 2024

Extensions

More terms from Michel Marcus, Aug 16 2020
Incorrect name replaced with a formula by Amiram Eldar, Jul 26 2024
Previous Showing 11-18 of 18 results.