cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A188629 Numbers k such that k^2 has one more divisor than k^2 - 1.

Original entry on oeis.org

2, 4, 8, 14, 16, 22, 38, 58, 135, 158, 178, 256, 297, 382, 502, 542, 568, 676, 718, 878, 1202, 1215, 1312, 1318, 1382, 1438, 1593, 1622, 1822, 2018, 2144, 2336, 2558, 2578, 2744, 2858, 2902, 3062, 3118, 3296, 3375, 3778, 3993, 4023, 4064, 4192, 4282
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 06 2011

Keywords

Crossrefs

Programs

  • Maple
    isA188629 := proc(n) if numtheory[tau](n^2) = numtheory[tau](n^2-1)+1 then true; else false; end if; end proc:
    for n from 1 do if isA188629(n) then print(n) ; end if; end do: # R. J. Mathar, Apr 14 2011
  • Mathematica
    Select[Range[10000], DivisorSigma[0, #^2 - 1] + 1 == DivisorSigma[0, #^2] &]
  • PARI
    is(k) = k > 1 && numdiv(k^2-1) + 1 == numdiv(k^2); \\ Amiram Eldar, Apr 17 2024

A339776 Numbers m such that tau(m) = tau(m + 1) - 1 = tau(m + 2), where tau(k) = the number of divisors of k (A000005).

Original entry on oeis.org

3, 252003, 293763, 770883, 1444803, 2630883, 6543363, 8421603, 9375843, 18992163, 19731363, 21883683, 22108803, 25786083, 25989603, 32512803, 35259843, 48972003, 98049603, 101566083, 132204003, 155201763, 160224963, 162766563, 187197123, 208455843, 291658083
Offset: 1

Views

Author

Jaroslav Krizek, Dec 16 2020

Keywords

Comments

Corresponding values of tau(a(n)): 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, ...
Triplets of [tau(a(n)), tau(a(n) + 1), tau(a(n) + 2)] = [tau(a(n)), tau(a(n)) + 1, tau(a(n))]: [2, 3, 2], [8, 9, 8], [8, 9, 8], [8, 9, 8], [8, 9, 8], [8, 9, 8], [8, 9, 8], [8, 9, 8], [8, 9, 8], ...
a(n) is one less than a perfect square. - David A. Corneth, Dec 29 2020

Examples

			tau(3) = 2, tau(4) = 3, tau(5) = 2.
		

Crossrefs

Subsequence of A005563.
Intersection of A062832 and A055927.

Programs

  • Magma
    [m: m in [2..10^6] | #Divisors(m + 1) - 1 eq #Divisors(m) and #Divisors(m + 2) eq #Divisors(m)]
    
  • Mathematica
    d1 = 1; d2 = 2; s = {}; Do[d3 = DivisorSigma[0, n]; If[Equal @@ {d1, d2 - 1, d3}, AppendTo[s, n - 2]]; d1 = d2; d2 = d3, {n, 3, 10^7}]; s (* Amiram Eldar, Dec 17 2020 *)
  • PARI
    isok(m) =  my(nb = numdiv(m)); (numdiv(m+2) == nb) && (numdiv(m+1) == nb+1); \\ Michel Marcus, Dec 18 2020

Extensions

More terms from Amiram Eldar, Dec 16 2020

A350142 Numbers m of the form 2^k + 1 such that tau(m-2) = tau(m-1) - 1.

Original entry on oeis.org

3, 5, 17, 65, 257, 65537, 4294967297
Offset: 1

Views

Author

Jaroslav Krizek, Dec 16 2021

Keywords

Comments

Corresponding pairs of values [tau(m-2), tau(m-1)]: [1, 2], [2, 3], [4, 5], [6, 7], [8, 9], [16, 17], [32, 33], ...
There are no other terms <= 2^1206 + 1 (from A046801 data).
The first 5 known Fermat primes from A019434 are in this sequence. Corresponding values of tau(A019434(n - 2)): 1, 2, 4, 8, 16, ...
Conjecture 1: Also numbers m of the form 2^k + 1 such that tau(m - 2) = k.
Conjecture 2: If 6th Fermat prime F_p6 exists, then tau(F_p6 - 2) is a power of 2 and tau(F_p6 - 1) = tau(F_p6 - 2) + 1.
Conjecture 3: Sequence is finite with 7 terms; supersequence of A262534.

Examples

			For number 257 holds: tau(255) = 8, tau(256) = 9.
		

Crossrefs

Intersection of (A055927+2) and A000051.

Programs

  • Magma
    [2^k + 1: k in [1..50] | #Divisors(2^k) - #Divisors(2^k-1) eq 1];
Previous Showing 11-13 of 13 results.