cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A082951 Number of primitive (aperiodic) word structures of length n using an infinite alphabet.

Original entry on oeis.org

1, 1, 1, 4, 13, 51, 197, 876, 4125, 21142, 115922, 678569, 4213381, 27644436, 190898444, 1382958489, 10480138007, 82864869803, 682076784814, 5832742205056, 51724158119384, 474869816155870, 4506715737768752, 44152005855084345, 445958869290587567
Offset: 0

Views

Author

Vadim Ponomarenko (vadim123(AT)gmail.com), May 26 2003

Keywords

Comments

Permuting the alphabet will not change a word structure. Thus aabc and bbca have the same structure.
Row sums of triangle A137651. - Gary W. Adamson, Feb 01 2008

Examples

			There are A000110(3)=5 word structures of length 3: aaa, aab, aba, abb, abc. The first consists of 3 copies of a word of length 1; the other 4 are primitive. So a(3)=4.
		

Crossrefs

Programs

  • Maple
    with(combinat,bell): with(numtheory): newb := proc(n) local s,i; s := 0; for i in divisors(n) do s := s+bell(i)*mobius(n/i): end do: end proc;
    # second Maple program:
    with(combinat): with(numtheory):
    a:= proc(n) option remember;
          bell(n)-add(a(d), d=divisors(n) minus {n})
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 23 2015
  • Mathematica
    a[n_] := DivisorSum[n, BellB[#] MoebiusMu[n/#]&]; a[0]=1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 23 2017 *)

Formula

a(n) = sum mu(c)*A000110(d) over all cd=n; equivalently, A000110(n) = sum a(k), where the sum is over all k|n.
1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) is the g.f. of A000110. - Ilya Gutkovskiy, Mar 05 2018

Extensions

More terms from Alois P. Heinz, Jan 23 2015

A320935 Number of chiral pairs of color patterns (set partitions) for a row of length n using 5 or fewer colors (subsets).

Original entry on oeis.org

0, 0, 1, 4, 20, 86, 400, 1852, 8868, 42892, 210346, 1038034, 5150110, 25623486, 127740880, 637539592, 3184224728, 15910524632, 79520923966, 397508610454, 1987255480650, 9935410066186, 49674450471460, 248364429410332, 1241798688445588, 6208922948527572, 31044403310614786
Offset: 1

Views

Author

Robert A. Russell, Oct 27 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted.
A chiral row is not equivalent to its reverse.
There are nonrecursive formulas, generating functions, and computer programs for A056272 and A305751, which can be used in conjunction with the first formula.

Examples

			For a(4)=4, the chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
		

Crossrefs

Column 5 of A320751.
Cf. A056272 (oriented), A056324 (unoriented), A305751 (achiral).

Programs

  • Mathematica
    LinearRecurrence[{11, -34, -16, 247, -317, -200, 610, -300}, {0, 0, 1, 4, 20, 86, 400, 1852}, 40] (* or *)
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k=5; Table[Sum[StirlingS2[n,j]-Ach[n,j],{j,k}]/2,{n,40}]

Formula

a(n) = (A056272(n) - A305751(n))/2.
a(n) = A056272(n) - A056324(n).
a(n) = A056324(n) - A305751(n).
a(n) = A122746(n-2) + A320526(n) + A320527(n) + A320528(n).
a(n) = Sum_{j=1..k} (S2(n,j) - Ach(n,j)) / 2, where k=5 is the maximum number of colors, S2 is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
G.f.: x^3*(1 - 7*x + 10*x^2 + 18*x^3 - 49*x^4 + 25*x^5)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 5*x)*(1 - 5*x^2)*(1 - 2*x^2)). - Bruno Berselli, Oct 31 2018

A056276 Number of primitive (aperiodic) word structures of length n using a 5-ary alphabet.

Original entry on oeis.org

1, 1, 4, 13, 51, 196, 854, 3830, 17997, 86419, 422004, 2079260, 10306751, 51263086, 255514299, 1275160060, 6368612301, 31821454413, 159042661904, 795019250650, 3974515029793, 19870830290476, 99348921288654, 496728909635860, 2483597478617750, 12417846151236799
Offset: 1

Views

Author

Keywords

Comments

Permuting the alphabet will not change a word structure. Thus aabc and bbca have the same structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Formula

a(n) = Sum_{d|n} mu(d)*A056272(n/d).
Previous Showing 21-23 of 23 results.