cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A241946 Numbers n equal to the sum of all the four-digit numbers formed without repetition from the digits of n.

Original entry on oeis.org

1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 3003, 3113, 3223, 3333, 3443, 3553, 3663, 3773, 3883, 3993, 4004, 4114, 4224, 4334, 4444, 4554, 4664, 4774, 4884, 4994, 5005, 5115, 5225
Offset: 1

Views

Author

Michel Lagneau, May 03 2014

Keywords

Comments

Let d(1)d(2)... d(q) denote the decimal expansion of a number n. Any decimal expansion of four-digits d(i)d(j)d(k)d(l) formed from the digits of n is such that ij>k>l.
This sequence is interesting because it contains more than just the only trivial palindromic values 1001, 1111, 1221,... The sequence is given by the union of subsets {palindromes with four digits from A056524} union {37323, 48015, 72468, 152658} and contains 94 elements. The last four elements are non-palindromic numbers.
But the generalization of this problem seems difficult, for example the case with the sum of all the three-digit numbers formed without repetition from the digits of n gives only 90 palindromic numbers 101, 111, 121,..., 989,999.

Examples

			37323 is in the sequence because 37323 =  2373 + 3233 + 3237 + 3273 + 3323 + 3373 + 3723 + 3732 + 3733 + 7323.
		

Crossrefs

Cf. A241899.

Programs

  • Maple
    with(numtheory):
    for n from 1000 to 10000 do:
         lst:={}:k:=0:x:=convert(n,base,10):n1:=nops(x):
            for i from 1 to n1 do:
              for j from i+1 to n1 do:
                for m from j+1 to n1 do:
                  for q from m+1 to n1 do:
                lst:=lst union {x[i]+10*x[j]+100*x[m]+1000*x[q]}:
                od:
              od:
            od:
            od:
               for a from n1 by -1 to 1 do:
                 for b from a-1 by -1 to 1 do:
                   for c from b-1 by -1 to 1 do:
                     for d from c-1 by -1 to 1 do:
                   lst:=lst union
                   {x[a]+10*x[b]+100*x[c]+1000*x[d]}:
                   od:
                 od:
                od:
                od:
               n2:=nops(lst):s:=sum('lst[i]', 'i'=1..n2):
               if s=n
                 then
                 printf(`%d, `,n):
                 else
               fi:
      od:

A352535 Numbers m such that A257588(m) = 0.

Original entry on oeis.org

0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 220, 330, 354, 440, 453, 550, 660, 770, 880, 990, 1001, 1100, 1111, 1122, 1133, 1144, 1155, 1166, 1177, 1188, 1199, 1221, 1331, 1441, 1487, 1551, 1575, 1661, 1771, 1784, 1881, 1991, 2002, 2112, 2200, 2211, 2222, 2233, 2244, 2255, 2266, 2277
Offset: 1

Views

Author

Bernard Schott, Mar 20 2022

Keywords

Comments

If m is a term, 10*m is also a term; so, terms with no trailing zeros are all primitive terms.
Palindromes with even number of digits (A056524) are all terms.

Examples

			354 is a term since 3^2 - 5^2 + 4^2 = 0 (with Pythagorean triple (3,4,5)).
1487 is a term since 1^2 - 4^2 + 8^2 - 7^2 = 0.
		

Crossrefs

Subsequences: A056524, A333440, A338754.

Programs

  • Mathematica
    f[n_] := Abs @ Total[(d = IntegerDigits[n]^2) * (-1)^Range[Length[d]]]; Select[Range[0, 2300], f[#] == 0 &] (* Amiram Eldar, Mar 20 2022 *)
  • Python
    from itertools import count, islice
    def A352535_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda m: not sum(int(d)**2*(-1 if i % 2 else 1) for i, d in enumerate(str(m))), count(max(startvalue,0)))
    A352535_list = list(islice(A352535_gen(),30)) # Chai Wah Wu, Mar 24 2022

Formula

A257588(a(n)) = 0.

A071272 Palindromes in A066492.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 101, 111, 121, 131, 141, 151, 161, 171, 181, 202, 212, 222, 232, 242, 252, 262, 272, 303, 313, 323, 333, 343, 353, 363, 404, 414, 424, 434, 444, 454, 505, 515, 525, 535, 545, 606, 616, 626, 636, 707, 717, 727, 808, 818, 909, 10001
Offset: 1

Views

Author

Amarnath Murthy, Jun 07 2002

Keywords

Crossrefs

Extensions

More terms from Sean A. Irvine, Jul 07 2024

A240468 Sum of the distinct prime divisors of the palindromes having an even number of digits.

Original entry on oeis.org

11, 13, 14, 13, 16, 16, 18, 13, 14, 31, 112, 51, 11, 142, 61, 162, 41, 33, 192, 33, 16, 114, 66, 53, 42, 13, 23, 144, 30, 34, 294, 304, 115, 324, 47, 51, 18, 364, 14, 33, 30, 16, 210, 114, 39, 66, 51, 53, 240, 36, 50, 35, 113, 19, 117, 119, 26, 123, 125, 36, 152, 296, 16, 306, 162, 117, 20
Offset: 1

Views

Author

Michel Lagneau, Apr 06 2014

Keywords

Comments

a(n) = Sopf(A056524(n)) = A008472(A056524(n)).
There exists a subsequence of squares such that 16, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, ...
There exists a subsequence of primes such that 11, 13, 19, 23, 31, 41, 47, 53, 59, 61, 67, 71, 73, 83, 89, 97, 109, 113, 131, 137, 139, 149,... but the subsequence of primes 17, 29, 37, 43, 101, 317, 433, 439, 487, 569,... is not included in the sequence.

Examples

			a(11) = 112 because Sopf(A056524(11)) = Sopf(1111) = A008472(1111) = 112.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 100 do:x:=convert(n,base,10):n1:=nops(x): s:=sum('x[i]*10^(n1-i)', 'i'=1..n1):y:=n*10^n1+s:z:=factorset(y):n2:=nops(z):s1:=sum('z[j]', 'j'=1..n2):printf(`%d, `,s1):od:
  • Mathematica
    Join[{11},d[n_]:=IntegerDigits[n];Rest[Total[Transpose[FactorInteger[Plus[FromDigits[Join[x=d[#],Reverse[x]]]]]][[1]]]&/@Range[100]]]

A372149 Palindrome numbers consisting only of odd digits.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 33, 55, 77, 99, 111, 131, 151, 171, 191, 313, 333, 353, 373, 393, 515, 535, 555, 575, 595, 717, 737, 757, 777, 797, 919, 939, 959, 979, 999, 1111, 1331, 1551, 1771, 1991, 3113, 3333, 3553, 3773, 3993, 5115, 5335, 5555, 5775, 5995, 7117, 7337, 7557, 7777, 7997
Offset: 1

Views

Author

James S. DeArmon, Apr 20 2024

Keywords

Crossrefs

Intersection of A002113 and A014261.

Programs

  • Mathematica
    Select[Range[8000], PalindromeQ[#] && Times@@Boole[OddQ[IntegerDigits[#]]] == 1 &] (* Stefano Spezia, Apr 30 2024 *)
  • Python
    from itertools import count, islice, product
    def agen(): # generator of terms
        for d in count(1):
            for p in product("13579", repeat=d//2):
                left = "".join(p)
                for mid in [[""], "13579"][d&1]:
                    yield int(left + mid + left[::-1])
    print(list(islice(agen(), 60))) # Michael S. Branicky, Jun 01 2025

Extensions

Missing 1551 inserted by Stefano Spezia, Apr 30 2024
Previous Showing 11-15 of 15 results.