cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A245241 Integers n such that 6 * 7^n + 1 is prime.

Original entry on oeis.org

0, 1, 4, 9, 99, 412, 2633, 5093, 5632, 28233, 36780, 47084, 53572
Offset: 1

Views

Author

Robert Price, Nov 14 2014

Keywords

Comments

All terms correspond to verified primes, that is, not merely probable primes.
a(14) > 2*10^5.

Examples

			4 is in this sequence because 6 * 7^4 + 1 = 14407, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,200000], PrimeQ[6 * 7^# + 1] &]

A272057 Numbers n such that 3*4^n - 1 is prime.

Original entry on oeis.org

1, 2, 3, 9, 17, 19, 32, 38, 47, 103, 108, 153, 162, 229, 235, 637, 1638, 2102, 2567, 6338, 7449, 12845, 20814, 40165, 61815, 77965, 117380, 207420, 351019, 496350, 600523, 1156367, 2117707, 5742009, 5865925, 5947859
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Apr 19 2016

Keywords

Comments

These are Williams primes to base 3.
Half of the even terms of A002235.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[3*4^# - 1] &]
  • PARI
    for(n=1,10000, if(isprime(3*4^n-1), print1(n,", ")))

Extensions

a(25) corrected and a(33)-a(36) added by Giovanni Resta, Apr 19 2016, using data from A002235.

A297348 Numbers k such that 12*13^k - 1 is prime.

Original entry on oeis.org

0, 2, 7, 11, 36, 164, 216, 302, 311, 455, 738, 1107, 2244, 3326, 4878, 8067, 46466
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 15 2018

Keywords

Comments

Williams primes to base 12.

Crossrefs

Programs

  • Magma
    [n: n in [0..10000] |IsPrime(12*13^n-1)];
  • Mathematica
    Select[Range[0, 10000], PrimeQ[12*13^n-1] &]
  • PARI
    for(n=0, 10000, if(isprime(12*13^n-1), print1(n, ", ")))
    

Extensions

a(16) from Michael S. Branicky, Sep 14 2022
a(17) from Michael S. Branicky, Nov 12 2024

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))

A093948 Primes of the form 9*10^k - 1.

Original entry on oeis.org

89, 8999, 89999999, 89999999999999999999, 899999999999999999999999999999, 89999999999999999999999999999999999999, 8999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
Offset: 1

Views

Author

Rick L. Shepherd, Apr 17 2004

Keywords

Comments

Equivalently, primes of the form 8*10^k + 9*R_k, where R_k is the repunit (A002275) of length k.

Crossrefs

Cf. A002275, A056725 (corresponding k).
Primes in A109002.

Formula

a(n) = 9*10^A056725(n) - 1 = A109002(A056725(n) + 1). - Elmo R. Oliveira, Jun 14 2025

A129990 Primes p such that the smallest integer whose sum of decimal digits is p is prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 43, 71, 79, 97, 173, 179, 257, 269, 311, 389, 691, 4957, 8423, 11801, 14621, 25621, 26951, 38993, 75743, 102031, 191671, 668869
Offset: 1

Views

Author

J. M. Bergot, Jun 14 2007

Keywords

Examples

			The smallest integer whose sum of digits is 17 is 89; 89 is prime, therefore 17 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]],PrimeQ[FromDigits[Join[{Mod[ #,9]},Table[9,{i,1,Floor[ #/9]}]]]] &]
  • Python
    from itertools import islice
    from sympy import isprime, nextprime
    def A051885(n): return ((n%9)+1)*10**(n//9)-1 # from Chai Wah Wu
    def agen(startp=2):
        p = startp
        while True:
            if isprime(A051885(p)): yield p
            p = nextprime(p)
    print(list(islice(agen(), 23))) # Michael S. Branicky, Jul 27 2022
    
  • Sage
    sorted( filter(is_prime, sum(([9*t+k for t in oeis(seq).first_terms()] for seq,k in (('A002957',1), ('A056703',2), ('A056712',4), ('A056716',5), ('A056721',7), ('A056725',8))), [3])) ) # Max Alekseyev, Feb 05 2025

Formula

Primes p such that (p mod 9 + 1) * 10^[p/9] - 1 is prime. Therefore the sequence consists of the term 3 and the primes of the forms A002957(k)*9+1, A056703(k)*9+2, A056712(k)*9+4, A056716(k)*9+5, A056721(k)*9+7, A056725(k)*9+8. - Max Alekseyev, Nov 09 2009

Extensions

Edited, corrected and extended by Stefan Steinerberger, Jun 23 2007
Extended by D. S. McNeil, Mar 20 2009
a(29)-a(33) from Max Alekseyev, Nov 09 2009
Previous Showing 11-16 of 16 results.