cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A056873 Numbers k such that k | p(k) - q(k) where p(k) = partition numbers (A000041) and q(k) = partition numbers into distinct parts (A000009).

Original entry on oeis.org

1, 8, 11, 34, 310, 1688, 2307, 2708, 13988, 21315, 46739, 426378, 771476, 11762557, 18628390, 19841526, 24396168, 85110245
Offset: 1

Views

Author

Robert G. Wilson v, Sep 02 2000

Keywords

Comments

No other terms below 10^8. - Max Alekseyev, Oct 12 2023

Crossrefs

Programs

  • Mathematica
    Do[ If[ Mod[ PartitionsP[n] - PartitionsQ[n], n] == 0, Print[n]], {n, 1, 14577}]

Extensions

a(10)-a(13) from Sean A. Irvine, May 12 2022
a(14)-a(18) from Max Alekseyev, Oct 12 2023

A294086 Numbers k such that k divides the number of planar partitions of k (A000219).

Original entry on oeis.org

1, 3, 6, 8, 10, 281, 382, 590, 5135, 13897, 31387, 37045, 46199, 85057
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 09 2018

Keywords

Comments

a(15) > 10^5. - Seiichi Manyama, Feb 11 2018
Next term, if it exists, is greater than 250000. - Vaclav Kotesovec, Mar 02 2018

Examples

			281 is in the sequence because A000219(281) = 126261896396707768167577329446424334 is divisible by 281.
		

Crossrefs

Programs

  • Mathematica
    pp[0] = 1; pp[n_] := pp[n] = (1/n)*Sum[pp[n-k]*DivisorSigma[2, k], {k, 1, n}]; Reap[For[n = 0; k = 1, k < 10^5, k++, If[Divisible[pp[k], k], n++; Print["a(", n, ") = ", k, "  pp(", k, ") = ", pp[k]]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Feb 11 2018 *)

Extensions

a(14) from Seiichi Manyama, Feb 11 2018

A363252 a(n) = gcd(A000041(n), A000009(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 2, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 2, 3, 2, 2, 1, 4, 2, 3, 7, 2, 3, 1, 1, 1, 1, 21, 21, 2, 1, 1, 2, 6, 14, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 4, 4, 17, 1, 2, 1, 2, 2, 4, 1, 3, 5, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 4, 1, 1, 1, 2, 11, 2
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2023, inspired by Zhi-Wei Sun

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> igcd(b(n), combinat[numbpart](n)):
    seq(a(n), n=0..120);  # Alois P. Heinz, May 23 2023
  • Mathematica
    Table[GCD[PartitionsP[n], PartitionsQ[n]], {n, 0, 100}]
Previous Showing 11-13 of 13 results.