cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A308051 Decimal expansion of lim_{m->oo} (sqrt(log(m))/m^2) Sum_{k=1..m} sigma(k)/d(k), where d(k) is the number of divisors of k (A000005) and sigma(k) is their sum (A000203).

Original entry on oeis.org

3, 5, 6, 9, 0, 4, 9, 6, 5, 2, 4, 9, 9, 5, 7, 0, 7, 6, 1, 2, 2, 0, 0, 5, 3, 0, 2, 0, 1, 3, 9, 9, 6, 4, 5, 9, 1, 3, 6, 0, 6, 6, 6, 8, 2, 6, 2, 5, 7, 3, 8, 4, 4, 2, 9, 6, 8, 7, 8, 8, 0, 2, 0, 1, 2, 7, 7, 4, 3, 4, 4, 2, 1, 4, 1, 8, 7, 2, 1, 3, 8, 5, 5, 3, 2, 1, 5
Offset: 0

Views

Author

Amiram Eldar, May 10 2019

Keywords

Examples

			0.35690496524995707612200530201399645913606668262573...
		

References

  • V. I. Arnold, Dynamics, Statistics, and Projective Geometry of Galois Fields, Cambridge University Press, Cambridge, 2011, p. 78.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; f[x_] := Log[1 + x]/x/Sqrt[1 - x]; c = Rest[CoefficientList[Series[Log[f[x]], {x, 0, m}], x]]; RealDigits[(1/2/ Sqrt[Pi])*Exp[NSum[Indexed[c, k]*PrimeZetaP[k], {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals (1/(2*sqrt(Pi))) * Product_{p prime} p^(3/2) * log(1 + 1/p) / sqrt(p-1).

A375080 a(n) is the numerator of ( Sum_{d|n} (n - d) )/tau(n).

Original entry on oeis.org

0, 1, 1, 5, 2, 3, 3, 17, 14, 11, 5, 22, 6, 8, 9, 49, 8, 23, 9, 13, 13, 13, 11, 33, 44, 31, 17, 56, 14, 21, 15, 43, 21, 41, 23, 233, 18, 23, 25, 115, 20, 30, 21, 30, 32, 28, 23, 178, 30, 69, 33, 107, 26, 39, 37, 41, 37, 71, 29, 46, 30, 38, 137, 321, 44, 48, 33, 47, 45, 52
Offset: 1

Views

Author

Stefano Spezia, Jul 29 2024

Keywords

Comments

( Sum_{d|n} (n - d) )/tau(n) is the average distance between n and its divisor.

Crossrefs

Cf. A000005, A000203, A057020, A057021 (denominator).

Programs

  • Mathematica
    a[n_]:=Numerator[n-DivisorSigma[1,n]/DivisorSigma[0,n]];  Array[a,70]
  • Python
    from math import prod
    from fractions import Fraction
    from sympy import factorint
    def A375080(n):
        f = factorint(n).items()
        return (n-Fraction(prod((p**(e+1)-1)//(p-1) for p, e in f),prod(e+1 for p,e in f))).numerator # Chai Wah Wu, Jul 30 2024

Formula

a(n) = numerator((n - sigma(n))/tau(n)).
a(n) = numerator(n - A000203(n)/A000005(n)).
a(n) = numerator(n - A057020(n)/A057021(n)).

A346644 Least k >= 1 such that sigma(k)/tau(k) has denominator n or zero if no k exists.

Original entry on oeis.org

1, 2, 4, 8, 16, 450, 64, 128, 36, 162, 1024, 1800, 4096, 1458, 144, 32768, 65536, 54450, 262144, 405000, 576, 118098, 4194304, 28800, 1296, 1062882, 900, 5832, 268435456, 115200, 1073741824, 2147483648, 9216, 86093442, 5184, 217800, 68719476736, 774840978, 102400
Offset: 1

Views

Author

Benoit Cloitre, Jul 26 2021

Keywords

Comments

Conjecture: k always exists.

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{s = Table[0,{max}], c = 0, n = 1}, While[c < max, d = Denominator[DivisorSigma[1,n]/DivisorSigma[0,n]]; If[d <= max && s[[d]] == 0, c++; s[[d]] = n]; n++]; s]; seq[22] (* Amiram Eldar, Jul 26 2021 *)
  • PARI
    a(n)=if(n<0, 0, t=1; while(denominator(sigma(t)/numdiv(t))!=n, t++); t)

Extensions

a(29)-a(36) from Amiram Eldar, Jul 26 2021
a(37) from David A. Corneth, Jul 26 2021
a(38)-a(39) from Jinyuan Wang, Jul 26 2021

A347077 Numbers m such that sigma(m) / tau(m) = sigma(m - 1) / tau(m - 1) + sigma(m + 1) / tau(m + 1).

Original entry on oeis.org

15063, 18519, 49841, 137607, 179943, 203345, 412763, 421307, 517334, 881851, 1102204, 2003233, 2831435, 3869018, 17378593, 76645063, 107594182, 118012619, 190791881, 418588841, 447287713, 475734745, 632799289, 661709127, 664171759, 900701138, 998754443, 1756922665
Offset: 1

Views

Author

Jaroslav Krizek, Aug 15 2021

Keywords

Comments

Numbers m such that A057020(m) / A057021(m) = A057020(m - 1) / A057021(m - 1) + A057020(m + 1) / A057021(m + 1).
Corresponding values of fractions sigma(m) / tau(m): 5022, 6174, 7128, 45870, 59982, 31008, 111132, 106680, 99636, 220948, 163044, 263160, 449712, 726864, 2278152, ...

Examples

			sigma(15063) / tau(15063) = sigma(15062) / tau(15062) + sigma(15064) / tau(15064); 20088 / 4 = 23976 / 8 + 32400 / 16; 5022 = 2997 + 2025.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A057020, A057021.

Programs

Extensions

a(16)-a(18) from Jon E. Schoenfield, Aug 15 2021
a(19)-a(28) from Amiram Eldar, Aug 16 2021
Previous Showing 11-14 of 14 results.