cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A247952 Numbers k such that 2^k + 31 is prime.

Original entry on oeis.org

4, 12, 36, 540, 844, 1192, 12136, 84280, 128356, 317464, 3018556
Offset: 1

Views

Author

Vincenzo Librandi, Sep 28 2014

Keywords

Comments

Some terms correspond to probable primes. Lifchitz link shows Paul Underwood discovered 84280, and Lelio R Paula found 128356 and 317464 are in the sequence. - Jens Kruse Andersen, Sep 29 2014
a(11) > 5*10^5. - Robert Price, Oct 25 2015
All terms are even. - Elmo R. Oliveira, Nov 25 2023

Crossrefs

Cf. Numbers k such that 2^k + d is prime: (0,1,2,4,8,16) for d=1; A057732 (d=3), A059242 (d=5), A057195 (d=7), A057196 (d=9), A102633 (d=11), A102634 (d=13), A057197 (d=15), A057200 (d=17), A057221 (d=19), A057201 (d=21), A057203 (d=23), A157006 (d=25), A157007 (d=27), A156982 (d=29), this sequence (d=31), A247953 (d=33), A220077 (d=35).

Programs

  • Magma
    [n: n in [0..2000]| IsPrime(2^n+31)];
    
  • Mathematica
    Select[Range[0,10000], PrimeQ[2^# + 31] &]
  • PARI
    is(n)=ispseudoprime(2^n+31) \\ Charles R Greathouse IV, May 22 2017

Formula

a(n) = 2*A262971(n). - Elmo R. Oliveira, Nov 25 2023

Extensions

12136 and 84280 from Jens Kruse Andersen, Sep 29 2014
a(9)-a(10) (discovered by Lelio R Paula; see the Lifchitz link) added by Robert Price, Oct 04 2015
a(11) discovered by Robert Price, added by Elmo R. Oliveira, Nov 25 2023

A247953 Numbers k such that 2^k + 33 is prime.

Original entry on oeis.org

2, 3, 6, 11, 12, 14, 15, 20, 30, 60, 68, 75, 108, 116, 135, 206, 210, 410, 446, 558, 851, 1482, 1499, 2039, 2051, 4196, 7046, 7155, 8735, 10619, 18420, 20039, 46719, 75348, 179790, 203018, 434246
Offset: 1

Views

Author

Vincenzo Librandi, Sep 28 2014

Keywords

Comments

Some terms correspond to probable primes. Lifchitz link shows the terms 179790 found by Donovan Johnson and 203018 by Lelio R Paula. - Jens Kruse Andersen, Sep 30 2014
a(38) > 5*10^5. - Robert Price, Nov 07 2015

Crossrefs

Cf. Numbers k such that 2^k + d is prime: (0,1,2,4,8,16) for d=1; A057732 (d=3), A059242 (d=5), A057195 (d=7), A057196 (d=9), A102633 (d=11), A102634 (d=13), A057197 (d=15), A057200 (d=17), A057221 (d=19), A057201 (d=21), A057203 (d=23), A157006 (d=25), A157007 (d=27), A156982 (d=29), A247952 (d=31), this sequence (d=33), A220077 (d=35).

Programs

  • Magma
    /* The code gives only the terms up to 851: */ [n: n in [1..1400]| IsPrime( 2^n + 33 )];
    
  • Maple
    A247957:=n->`if`(isprime(2^n+33),n,NULL): seq(A247957(n), n=0..1000); # Wesley Ivan Hurt, Sep 28 2014
  • Mathematica
    Select[Range[10000], PrimeQ[2^# + 33] &]
  • PARI
    is(n)=ispseudoprime(2^n+33) \\ Charles R Greathouse IV, Feb 20 2017

Extensions

a(30)-a(34) from Jens Kruse Andersen, Sep 30 2014
a(35)-a(36) (discovered by Donovan Johnson and Lelio R Paula, respectively; see the Lifchitz link) added by Robert Price, Oct 04 2015
a(37) from Robert Price, Nov 07 2015

A156982 Numbers k such that 2^k + 29 is prime.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 17, 23, 27, 33, 37, 43, 63, 69, 73, 79, 89, 117, 127, 239, 395, 409, 465, 837, 2543, 10465, 10837, 17005, 19285, 24749, 26473, 29879, 49197, 56673, 67119, 67689, 71007, 109393, 156403, 158757, 181913, 190945, 207865, 222943, 419637
Offset: 1

Views

Author

Edwin Dyke (ed.dyke(AT)btinternet.com), Feb 20 2009

Keywords

Comments

n cannot be of the form 4m+2 or 4m because 2^(2m+2) + 29 is divisible by 3 and 2^4m + 29 is divisible by 15. - Avik Roy (avik_3.1416(AT)yahoo.co.in), Feb 21 2009
a(47) > 5*10^5. - Robert Price, Oct 25 2015

Examples

			For k = 1, 2^1 + 29 = 31.
For k = 3, 2^3 + 29 = 37.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2^n+29)]; // Vincenzo Librandi, Oct 05 2015
    
  • Mathematica
    Delete[Union[Table[If[PrimeQ[2^n + 29], n, 0], {n, 1, 2600}]], 1]
    Select[Range[500000], PrimeQ[2^#+29]&] (* Robert Price, Oct 04 2015 *)
  • PARI
    is(n)=ispseudoprime(2^n+29) \\ Charles R Greathouse IV, Jun 06 2017

Extensions

a(27)-a(38) from Robert Price, Oct 04 2015
a(39)-a(46) discovered by Henri Lifchitz from Lifchitz link by Robert Price, Oct 04 2015

A157006 Numbers k such that 2^k + 25 is prime.

Original entry on oeis.org

2, 4, 6, 8, 10, 20, 22, 34, 70, 92, 112, 118, 236, 250, 378, 438, 570, 654, 800, 1636, 2848, 4948, 5670, 6772, 7494, 8006, 9056, 11038, 16268, 21416, 21738, 33370, 78706, 112130, 126446, 164046, 219250, 236432, 368048, 524154, 530810, 640854, 699740, 746302, 754038, 754376, 931976, 989562
Offset: 1

Views

Author

Edwin Dyke (ed.dyke(AT)btinternet.com), Feb 20 2009

Keywords

Comments

a(40) > 5*10^5. - Robert Price, Oct 15 2015
Since each term is even (n = 2*k), prime numbers of the form 2^k + 25 (see A104072) also have the form 4^k + 25. Those values of k are given in A204388. - Timothy L. Tiffin, Aug 06 2016

Examples

			For k = 2, 2^2 + 25 = 29.
For k = 4, 2^4 + 25 = 41.
For k = 6, 2^6 + 25 = 89.
		

Crossrefs

Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23), this sequence (2^k+25), A157007 (2^k+27), A156982 (2^k+29), A247952 (2^k+31), A247953 (2^k+33), A220077 (2^k+35).

Programs

  • Magma
    [n: n in [1..1000] | IsPrime(2^n+25)]; // Vincenzo Librandi, Aug 07 2016
    
  • Mathematica
    Delete[Union[Table[If[PrimeQ[2^n + 25], n, 0], {n, 1, 1000}]], 1]
    Select[Range[0, 10000], PrimeQ[2^# + 25] &] (* Vincenzo Librandi, Aug 07 2016 *)
  • PARI
    is(n)=ispseudoprime(2^n+5^2) \\ Charles R Greathouse IV, Feb 20 2017

Formula

a(n) = 2*A204388(n). - Timothy L. Tiffin, Aug 09 2016

Extensions

Extended by Vladimir Joseph Stephan Orlovsky, Feb 27 2011
a(29)-a(39) from Robert Price, Oct 15 2015
a(40)-a(48) found by Stefano Morozzi, added by Elmo R. Oliveira, Nov 25 2023

A220077 Numbers k such that 2^k + 35 is prime.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 15, 25, 33, 57, 117, 133, 189, 195, 263, 273, 287, 509, 693, 1087, 1145, 1159, 1845, 2743, 3275, 12223, 26263, 31425, 44359, 48003, 49251, 62557, 113877, 114507, 132865, 165789, 192549, 348437, 426043, 436365, 471043, 480417
Offset: 1

Views

Author

Vincenzo Librandi, Dec 04 2012

Keywords

Comments

Some terms correspond to probable primes. Lifchitz link shows Lelio R Paula found the terms 132865, 165789, 192549, 348437. - Jens Kruse Andersen, Oct 01 2014
a(43) > 5*10^5. - Robert Price, Nov 01 2015
All terms are odd. - Elmo R. Oliveira, Nov 27 2023

Crossrefs

Cf. Numbers k such that 2^k + d is prime: (0,1,2,4,8,16) for d=1; A057732 (d=3), A059242 (d=5), A057195 (d=7), A057196 (d=9), A102633 (d=11), A102634 (d=13), A057197 (d=15), A057200 (d=17), A057221 (d=19), A057201 (d=21), A057203 (d=23), A157006 (d=25), A157007 (d=27), A156982 (d=29), A247952 (d=31), A247953 (d=33), this sequence (d=35).

Programs

  • Mathematica
    Select[Range[5000],PrimeQ[2^# + 35] &]
  • PARI
    for(n=1, 10^30, if (isprime(2^n + 35), print1(n", "))); \\ Altug Alkan, Oct 05 2015

Extensions

a(26)-a(34) from Jens Kruse Andersen, Oct 01 2014
132865, 165789, 192549, 348437 discovered by Lelio R Paula confirmed as a(35)-a(38) by Robert Price, Oct 05 2015
a(39)-a(42) from Robert Price, Nov 01 2015

A133830 Least positive number k < n such that the binary trinomial 1 + 2^n + 2^k is prime, or 0 if there is no such k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 0, 3, 3, 2, 1, 4, 5, 1, 1, 11, 1, 6, 5, 4, 7, 3, 9, 0, 17, 15, 1, 15, 1, 6, 0, 4, 9, 14, 13, 3, 11, 25, 0, 6, 7, 0, 17, 7, 15, 2, 0, 30, 23, 6, 21, 2, 33, 1, 0, 3, 0, 14, 5, 6, 21, 19, 0, 30, 3, 1, 5, 34, 19, 26, 17, 19, 17, 5, 33, 15, 23, 27, 33, 4, 3, 26, 1, 39, 35, 19, 9, 18
Offset: 2

Views

Author

T. D. Noe, Sep 26 2007

Keywords

Comments

Sequence A081504 gives the n such that a(n) = 0. For those n, A133831(n) gives the least k > n for which the binary trinomial is prime.

Crossrefs

Cf. A057732, A059242, A057196, A057200, A081091 (various forms of prime binary trinomials).
Cf. A095056, A133831, A133832 (k > n equivalent).

Programs

  • Mathematica
    Table[s=1+2^n; k=1; While[k
    				

Extensions

Edited by Peter Munn, Sep 30 2024

A133831 Least positive number k != n such that the binary trinomial 1 + 2^n + 2^k is prime, or 0 if there is no such k.

Original entry on oeis.org

2, 1, 1, 1, 2, 1, 1, 9, 3, 3, 2, 1, 4, 5, 1, 1, 11, 1, 6, 5, 4, 7, 3, 9, 27, 17, 15, 1, 15, 1, 6, 458465, 4, 9, 14, 13, 3, 11, 25, 57, 6, 7, 46, 17, 7, 15, 2, 1009, 30, 23, 6, 21, 2, 33, 1, 1265, 3, 69, 14, 5, 6, 21, 19, 2241, 30, 3, 1, 5, 34, 19, 26, 17, 19, 17, 5, 33, 15, 23, 27
Offset: 1

Views

Author

T. D. Noe, Sep 26 2007

Keywords

Comments

Does such k exist (so that a(n) is nonzero) for all n? These binary trinomials can also be written as f*2^n+1, where f=2^m+1 for some m, which is reminiscent of the Sierpinski problem (see A076336). Hence if there are no Sierpinski numbers of the form 2^m+1, then a(n) is nonzero for all n.
The PFGW program was used to find a(32), which produces a 138012-digit probable prime. If a(256) is nonzero, it is greater than 10^6.

Crossrefs

Cf. A057732, A059242, A057196, A057200, A081091 (various forms of prime binary trinomials).
Closely related problems: A040076 (see also A076336), A067760, A133830 (k < n), A133832 (k > n).
Cf. A095056.

Programs

  • Mathematica
    mx=4000; Table[s=1+2^n; k=1; While[k==n || (k
    				

Extensions

Edited by Peter Munn, Sep 29 2024

A133832 Least number k > n such that the binary trinomial 1 + 2^n + 2^k is prime, or 0 if there is no such k.

Original entry on oeis.org

2, 3, 5, 13, 6, 7, 9, 9, 18, 19, 14, 13, 15, 17, 17, 81, 20, 19, 30, 33, 26, 27, 38, 81, 27, 35, 31, 33, 35, 31, 42, 458465, 36, 45, 47, 37, 67, 53, 41, 57, 42, 45, 46, 69, 54, 57, 53, 1009, 100, 119, 55, 73, 83, 67, 57, 1265, 74, 69, 66, 113, 75, 101, 66, 2241, 68, 67, 70
Offset: 1

Views

Author

T. D. Noe, Sep 26 2007

Keywords

Comments

Conjecture: a(n) is nonzero for all n. These binary trinomials can also be written as f*2^n+1, where f=2^m+1 for some m, which is reminiscent of the Sierpinski problem (see A076336). The conjecture is equivalent to no Sierpinski numbers of the form 2^m+1 existing.
The PFGW program was used to find a(32), which produces a 138012-digit probable prime.

Crossrefs

Cf. A057732, A059242, A057196, A057200, A081091 (various forms of prime binary trinomials).
Cf. A095056, A133830 (k < n equivalent), A133831.

Programs

  • Mathematica
    mx=4000; Table[s=1+2^n; k=n+1; While[k
    				

Extensions

Edited by Peter Munn, Sep 29 2024

A156973 Primes of the form 2^k + 17.

Original entry on oeis.org

19, 8209, 2097169, 8589934609, 2417851639229258349412369, 680564733841876926926749214863536422929, 62165404551223330269422781018352605012557018849668464680057997111644937126566671941649
Offset: 1

Views

Author

Edwin Dyke (ed.dyke(AT)btinternet.com), Feb 19 2009

Keywords

Examples

			19 = 2^1 + 17 is in the sequence;
8209 = 2^13 + 17 is in the sequence.
		

Crossrefs

Cf. A000040, A057200, A057733 (2^k + 3), A123250 (2^k + 5), A104066 (2^k + 7), A156940 (2^k + 11), A104067 (2^k + 13).

Programs

  • Magma
    [ a: n in [1..400] | IsPrime(a) where a is 2^n+17 ]; // Vincenzo Librandi, Nov 27 2010
  • Mathematica
    Delete[Union[Table[If[PrimeQ[2^n + 17], 2^n + 17, 0], {n, 1, 300}]],1]

Formula

a(n) = 2^A057200(n) + 17. - Elmo R. Oliveira, Nov 08 2023

Extensions

a(7) from Vincenzo Librandi, Apr 29 2010

A262099 Primes p such that 2^p + 17 is also prime.

Original entry on oeis.org

13, 769, 4441, 184189
Offset: 1

Views

Author

Vincenzo Librandi, Sep 18 2015

Keywords

Comments

a(5) > 5*10^5. - Robert Price, Sep 18 2015
A000040 INTERSECT A057200. - Robert Price, Sep 18 2015

Examples

			13 is in sequence because 2^13 + 17 = 8209 is prime.
		

Crossrefs

Subsequence of primes of A057200.
Cf. similar sequences listed in A262098.

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(2^p+17)];
    
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[2^# + 17] &]
  • PARI
    for(n=1, 1e3, if(isprime((2^prime(n))+17), print1(prime(n)", "))) \\ Altug Alkan, Sep 18 2015
Previous Showing 11-20 of 21 results. Next