A272582 The number of strongly connected digraphs with n vertices and n+1 edges.
0, 9, 84, 720, 6480, 63000, 665280, 7620480, 94348800, 1257379200, 17962560000, 273988915200, 4446092851200, 76498950528000, 1391365527552000, 26676557107200000, 537799391281152000, 11373816888225792000, 251805357846282240000, 5824367407574876160000
Offset: 2
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..200
- E. M. Wright, Formulae for the number of sparsely-edged strong labelled digraphs, Quart. J. Math. 28 (3) (1977) 363-367, Section 3.
Crossrefs
A diagonal of A057273.
Programs
-
Mathematica
Table[(n-2)(n+3)n!/4,{n,2,30}] (* Harvey P. Dale, May 23 2017 *)
-
PARI
a(n) = (n-2)*(n+3)*n!/4 \\ Andrew Howroyd, Jan 15 2022
-
Python
from _future_ import print_function from sympy import factorial for n in range(2,500): print((int)((n-2)*(n+3)*factorial(n)/4),end=", ") # Soumil Mandal, May 12 2016
Formula
a(n) = (n-2)*(n+3)*n!/4.
E.g.f.: x^3*(3 - 2*x)/(2*(1 - x)^3). - Ilya Gutkovskiy, May 10 2016
D-finite with recurrence -(n+1)*(n-4)*a(n) +(n-1)*(n-3)*(n+2)*a(n-1)=0. - R. J. Mathar, Mar 11 2021
Comments