cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A272582 The number of strongly connected digraphs with n vertices and n+1 edges.

Original entry on oeis.org

0, 9, 84, 720, 6480, 63000, 665280, 7620480, 94348800, 1257379200, 17962560000, 273988915200, 4446092851200, 76498950528000, 1391365527552000, 26676557107200000, 537799391281152000, 11373816888225792000, 251805357846282240000, 5824367407574876160000
Offset: 2

Views

Author

R. J. Mathar, May 10 2016

Keywords

Comments

Wright also gives the number of strongly connected digraphs with n vertices and n+2 edges, 0, 6, 316, 6440, 107850, 1719060, 27476400, ... (offset 2) in terms of a polynomial of order 5 multiplied by n!. - R. J. Mathar, May 12 2016

Crossrefs

A diagonal of A057273.

Programs

  • Mathematica
    Table[(n-2)(n+3)n!/4,{n,2,30}] (* Harvey P. Dale, May 23 2017 *)
  • PARI
    a(n) = (n-2)*(n+3)*n!/4 \\ Andrew Howroyd, Jan 15 2022
  • Python
    from _future_ import print_function
    from sympy import factorial
    for n in range(2,500):
       print((int)((n-2)*(n+3)*factorial(n)/4),end=", ")
    # Soumil Mandal, May 12 2016
    

Formula

a(n) = (n-2)*(n+3)*n!/4.
E.g.f.: x^3*(3 - 2*x)/(2*(1 - x)^3). - Ilya Gutkovskiy, May 10 2016
D-finite with recurrence -(n+1)*(n-4)*a(n) +(n-1)*(n-3)*(n+2)*a(n-1)=0. - R. J. Mathar, Mar 11 2021

A350909 Triangle read by rows: T(n,k) is the number of weakly connected acyclic digraphs on n labeled nodes with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 0, 2, 0, 0, 12, 6, 0, 0, 0, 128, 186, 108, 24, 0, 0, 0, 0, 2000, 5640, 7840, 6540, 3330, 960, 120, 0, 0, 0, 0, 0, 41472, 189480, 456720, 730830, 832370, 690300, 416160, 178230, 51480, 9000, 720, 0, 0, 0, 0, 0, 0, 1075648, 7178640, 26035800, 65339820
Offset: 1

Views

Author

Andrew Howroyd, Jan 29 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 2;
  [3] 0, 0, 12,   6;
  [4] 0, 0,  0, 128,  186,  108,   24;
  [5] 0, 0,  0,   0, 2000, 5640, 7840, 6540, 3330, 960, 120;
  ...
		

Crossrefs

Row sums are A082402.
Leading diagonal is A097629.
The unlabeled version is A350449.

Programs

  • PARI
    G(n)={my(v=vector(n+1)); v[1]=1; for(n=1, n, v[n+1]=sum(k=1, n, -(-1)^k*(1+y)^(k*(n-k))*v[n-k+1]/k!))/n!; Ser(v)}
    row(n)={Vecrev(n!*polcoef(log(G(n)), n))}
    { for(n=1, 6, print(row(n))) }
Previous Showing 11-12 of 12 results.