A057363 a(n) = floor(8*n/13).
0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 41, 42, 43, 43, 44, 44
Offset: 0
References
- N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- N. Dershowitz and E. M. Reingold, Calendrical Calculations Web Site
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Magma
[Floor(8*n/13): n in [0..50]]' // G. C. Greubel, Nov 02 2017
-
Mathematica
Table[Floor[8*n/13], {n, 0, 50}] (* G. C. Greubel, Nov 02 2017 *) LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,0,1,-1},{0,0,1,1,2,3,3,4,4,5,6,6,7,8},80] (* Harvey P. Dale, Jul 21 2020 *)
-
PARI
a(n)=8*n\13 \\ Charles R Greathouse IV, Sep 02 2015
Formula
a(n) = a(n-1) + a(n-13) - a(n-14).
G.f.: x^2*(1+x)*(x^2 - x + 1)*(x^8 + x^7 + x^2 + 1)/( (x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x-1)^2 ). [Numerator corrected Feb 20 2011]
Comments