A062583 Numbers k such that 17^k - 16^k is prime.
5, 7, 79, 523, 571, 2837
Offset: 1
Programs
-
PARI
is(n)=ispseudoprime(17^n-16^n) \\ Charles R Greathouse IV, May 22 2017
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
is(n)=ispseudoprime(17^n-16^n) \\ Charles R Greathouse IV, May 22 2017
a(1) = 4 because 3^4 - 2^4 = 5 * 13 a(2) = 7 because 3^7 - 2^7 = 29 * 71 a(3) = 9 because 3^9 - 2^9 = 1009 * 19 a(4) = 13 because 3^13 - 2^13 = 53 * 29927 a(5) = 19 because 3^19 - 2^19 = 1559 * 745181 a(6) = 23 because 3^23 - 2^23 = 47 * 2002867877 a(7) = 37 because 3^37 - 2^37 = 8891471 * 50642213021 a(8) = 71 because 3^71 - 2^71 = 67049419 * 111998979662707645844109121 a(9) = 89 because 3^89 - 2^89 = 4120081168939 * 706132008101135602203621405289 a(10) = 97 because 3^97 - 2^97 = 319128643 * 59813046375181769306016700165290169537 a(11) = 131 because 3^131 - 2^131 = 263 * 1210399177182288006201752262354382648158190136861552303421773 a(12) = 167 because 3^167 - 2^167 = 167884386911 * 284602839755962600307038183361142274453177384697761703968640951718869 a(13) = 193 because 3^193 - 2^193 = 773 * 157116815095122696291789672145814943987605497895096234870661710074857006307174092298131047 a(14) = 227 because 3^227 - 2^227 = 167360891302418779411 * 12102381564694515014432350438002672779054341887509579790377508212702751544613632122970969 a(15) = 229 because 3^229 - 2^229 = 271117470516046849 * 67237232094433305864393166477037402086197319313004074022941345112953840883539481643687544179 a(16) = 257 because 3^257 - 2^257 = 3650201327 * 114247220844165289049224917003868019618046824570124111266639206512722372880755761151052076786187552795911804402733 a(17) = 263 because 3^263 - 2^263 = 1789696394587605010251024191 * 169867630212703250249981022070263878299079238108093021871181171428200213741587995035055139427113909 a(18) = 269 because 3^269 - 2^269 = 3767 * 58833122596041019850277965408508940208380870952125838087379156948993498251689923575161076689330121444393974916753840891087813 a(19) = 271 because 3^271 - 2^271 = 2711 * 735750407736473144959046057264728365874119021724332398617327934122565857164514694088659506296666818455309890905079155116415309
Select[Range[10^5], PrimeQ[25^#-24^# ]&]
Select[Range[10^5], PrimeQ[24^#-23^# ]&]
is(n)=ispseudoprime(12^n-11^n) \\ Charles R Greathouse IV, May 22 2017
forprime(n=1, 9999, ispseudoprime(43^n-42^n) && print1(n", ")) \\ - M. F. Hasler, Sep 21 2013
forprime(n=1,9999,ispseudoprime(45^n-44^n)&print1(n",")) \\ - M. F. Hasler, Sep 21 2013
Do[k = 1; While[ !PrimeQ[((2n+1)^k - 2^k)/(2n-1)], k++ ]; Print[k], {n, 100}] (* Ryan Propper, Mar 29 2007 *) lnk[n_]:=Module[{k=1},While[!PrimeQ[((2n+1)^k-2^k)/(2n-1)],k++];k]; Array[ lnk,90] (* Harvey P. Dale, May 19 2012 *)
Comments