cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 101 results. Next

A326184 a(n) = sigma(n) - A057521(n), where A057521 gives the powerful part of n, and sigma gives the sum of divisors of n.

Original entry on oeis.org

0, 2, 3, 3, 5, 11, 7, 7, 4, 17, 11, 24, 13, 23, 23, 15, 17, 30, 19, 38, 31, 35, 23, 52, 6, 41, 13, 52, 29, 71, 31, 31, 47, 53, 47, 55, 37, 59, 55, 82, 41, 95, 43, 80, 69, 71, 47, 108, 8, 68, 71, 94, 53, 93, 71, 112, 79, 89, 59, 164, 61, 95, 95, 63, 83, 143, 67, 122, 95, 143, 71, 123, 73, 113, 99, 136, 95, 167, 79, 170, 40, 125, 83
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2019

Keywords

Crossrefs

Cf. also A326187.

Programs

  • PARI
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521.
    A326184(n) = (sigma(n)-A057521(n));

Formula

a(n) = A000203(n) - A057521(n).

A349350 Dirichlet inverse of A057521, the powerful part of n.

Original entry on oeis.org

1, -1, -1, -3, -1, 1, -1, -1, -8, 1, -1, 3, -1, 1, 1, 5, -1, 8, -1, 3, 1, 1, -1, 1, -24, 1, -10, 3, -1, -1, -1, 7, 1, 1, 1, 24, -1, 1, 1, 1, -1, -1, -1, 3, 8, 1, -1, -5, -48, 24, 1, 3, -1, 10, 1, 1, 1, 1, -1, -3, -1, 1, 8, -3, 1, -1, -1, 3, 1, -1, -1, 8, -1, 1, 24, 3, 1, -1, -1, -5, 28, 1, -1, -3, 1, 1, 1, 1, -1, -8
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Comments

Multiplicative because A057521 is.

Crossrefs

Cf. A057521.
Cf. also A349340, A349442.

Programs

  • Mathematica
    f[p_, e_] := Module[{B = 1 + p - 2*p^2, C = Sqrt[1 + 2*p - 3*p^2]}, FullSimplify[((B - C)*(p - 1 + C)^(e - 1) - (B + C)*(p - 1 - C)^(e - 1))/(2^e*C)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2023 *)
  • PARI
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
    memoA349350 = Map();
    A349350(n) = if(1==n,1,my(v); if(mapisdefined(memoA349350,n,&v), v, v = -sumdiv(n,d,if(dA057521(n/d)*A349350(d),0)); mapput(memoA349350,n,v); (v)));

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A057521(n/d) * a(d).
Let p be a prime, B = 1 + p - 2*p^2 and C = sqrt(1 + 2*p - 3*p^2). Then the sequence is multiplicative with a(p^e) = ((B-C)*(p-1+C)^(e-1) - (B+C)*(p-1-C)^(e-1))/(2^e*C). - Sebastian Karlsson, Dec 02 2021

A349379 Möbius transform of A057521 (powerful part of n).

Original entry on oeis.org

1, 0, 0, 3, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 18, 0, 0, 0, 0, 16, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Comments

Multiplicative with a(p^e) = 0 if e = 1, p^2 - 1 if e = 2 and p^e - p^(e-1) otherwise. - Amiram Eldar, Nov 18 2021

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Which[e > 2, p^e - p^(e - 1), e == 2, p^2 - 1, e == 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
  • PARI
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
    A349379(n) = sumdiv(n,d,moebius(n/d)*A057521(d));
    
  • Python
    from math import prod
    from sympy import factorint
    def A349379(n): return prod(0 if e==1 else p**e - (1 if e==2 else p**(e-1)) for p,e in factorint(n).items()) # Chai Wah Wu, Nov 14 2022

Formula

a(n) = Sum_{d|n} A008683(n/d) * A057521(d).
a(n) = Sum_{d|n} A000010(n/d) * A349441(d).

A379583 Numerators of the partial sums of the reciprocals of the powerful part function (A057521).

Original entry on oeis.org

1, 2, 3, 13, 17, 21, 25, 51, 467, 539, 611, 629, 701, 773, 845, 1699, 1843, 1859, 2003, 2039, 2183, 2327, 2471, 2489, 62369, 65969, 198307, 201007, 211807, 222607, 233407, 467489, 489089, 510689, 532289, 532889, 554489, 576089, 597689, 600389, 621989, 643589, 665189
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

Examples

			Fractions begin with 1, 2, 3, 13/4, 17/4, 21/4, 25/4, 51/8, 467/72, 539/72, 611/72, 629/72, ...
		

Crossrefs

Cf. A057521, A191622, A370902, A370903, A379584 (denominators), A379585.

Programs

  • Mathematica
    f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/powful[n], {n, 1, 50}]]]
  • PARI
    powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powerful(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A057521(k)).
a(n)/A379584(n) = c * n + O(n^(1/2)), where c = A191622 (Cloutier et al., 2014). The error term was improved by Tóth (2017) to O(n^(1/2) * exp(-c1 * log(n)^(3/5) / log(log(n))^(1/5))) unconditionally, and O(n^(2/5) * exp(c2 * log(n) / log(log(n)))) assuming the Riemann hypothesis, where c1 and c2 are positive constants.

A379584 Denominators of the partial sums of the reciprocals of the powerful part function (A057521).

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 4, 8, 72, 72, 72, 72, 72, 72, 72, 144, 144, 144, 144, 144, 144, 144, 144, 144, 3600, 3600, 10800, 10800, 10800, 10800, 10800, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 1058400
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

Crossrefs

Cf. A057521, A370902, A370903, A379583 (numerators), A379586.

Programs

  • Mathematica
    f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/powful[n], {n, 1, 50}]]]
  • PARI
    powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powerful(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A057521(k)).

A379585 Numerators of the partial alternating sums of the reciprocals of the powerful part function (A057521).

Original entry on oeis.org

1, 0, 1, 3, 7, 3, 7, 13, 125, 53, 125, 107, 179, 107, 179, 349, 493, 53, 69, 65, 81, 65, 81, 79, 1991, 1591, 43357, 40657, 51457, 40657, 51457, 102239, 123839, 102239, 123839, 123239, 144839, 123239, 144839, 142139, 163739, 142139, 163739, 158339, 160739, 139139
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

Examples

			Fractions begin with 1, 0, 1, 3/4, 7/4, 3/4, 7/4, 13/8, 125/72, 53/72, 125/72, 107/72, ...
		

Crossrefs

Cf. A057521, A191622, A370902, A370903, A379583, A379586 (denominators).

Programs

  • Mathematica
    f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/powful[n], {n, 1, 50}]]]
  • PARI
    powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / powerful(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A057521(k)).
a(n)/A379586(n) = (5/19) * A191622 * n + O(n^(1/2) * exp(-c1 * log(n)^(3/5) / log(log(n))^(1/5))) unconditionally, and with an improved error term O(n^(2/5) * exp(c2 * log(n) / log(log(n)))) assuming the Riemann hypothesis, where c1 and c2 are positive constants.

A379586 Denominators of the partial alternating sums of the reciprocals of the powerful part function (A057521).

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 4, 8, 72, 72, 72, 72, 72, 72, 72, 144, 144, 16, 16, 16, 16, 16, 16, 16, 400, 400, 10800, 10800, 10800, 10800, 10800, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 1058400
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

Crossrefs

Cf. A057521, A370902, A370903, A379584, A379585 (numerators).

Programs

  • Mathematica
    f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[(-1)^(n+1)/powful[n], {n, 1, 50}]]]
  • PARI
    powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / powerful(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A057521(k)).

A326186 a(n) = n - A057521(n), where A057521 gives the powerful part of n.

Original entry on oeis.org

0, 1, 2, 0, 4, 5, 6, 0, 0, 9, 10, 8, 12, 13, 14, 0, 16, 9, 18, 16, 20, 21, 22, 16, 0, 25, 0, 24, 28, 29, 30, 0, 32, 33, 34, 0, 36, 37, 38, 32, 40, 41, 42, 40, 36, 45, 46, 32, 0, 25, 50, 48, 52, 27, 54, 48, 56, 57, 58, 56, 60, 61, 54, 0, 64, 65, 66, 64, 68, 69, 70, 0, 72, 73, 50, 72, 76, 77, 78, 64, 0, 81, 82, 80, 84
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2019

Keywords

Crossrefs

Cf. also A010848.

Programs

  • PARI
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521.
    A326186(n) = (n-A057521(n));
    
  • Python
    from math import prod
    from sympy import factorint
    def A326186(n): return n-n//prod(p for p, e in factorint(n).items() if e == 1) # Chai Wah Wu, Nov 14 2022

Formula

a(n) = n - A057521(n).

A381311 Numbers whose powerful part (A057521) is a power of a prime with an even exponent >= 2.

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 75, 76, 80, 81, 84, 90, 92, 98, 99, 112, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 188, 192, 198, 204, 207, 208, 212, 220, 228, 234, 236
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

Numbers k whose largest unitary divisor that is a square, A350388(k), is a prime power (A246655), or equivalently, A350388(k) is in A056798 \ {1}.
Numbers having exactly one non-unitary prime factor and its multiplicity is even.
Numbers whose prime signature (A118914) is of the form {1, 1, ..., 2*m} with m >= 1, i.e., any number (including zero) of 1's and then a single even number.
The asymptotic density of this sequence is (1/zeta(2)) * Sum_{p prime} p/((p-1)*(p+1)^2) = 0.24200684327095676029... .

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = ReverseSort[FactorInteger[n][[;;,2]]]}, EvenQ[e[[1]]] && (Length[e] == 1 || e[[2]] == 1)]; Select[Range[1000],q]
  • PARI
    isok(k) = if(k == 1, 0, my(e = vecsort(factor(k)[, 2], , 4)); !(e[1] % 2) && (#e == 1 || e[2] == 1));

A384519 Numbers whose powerful part (A057521) is greater than 1 and is equal to a squarefree number raised to an even power (A384517).

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 75, 76, 80, 81, 84, 90, 92, 98, 99, 100, 112, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198, 204, 207, 208, 212, 220
Offset: 1

Views

Author

Amiram Eldar, Jun 01 2025

Keywords

Comments

Subsequence of A240112 and first differs from it at n = 30: A240112(30) = 108 is not a term of this sequence.
Subsequence of A368714 and differs from it by not having the terms 1, 144, 324, 400, 432, ... .
Numbers whose prime factorization has one distinct exponent that is larger than 1 and it is even.
Numbers that are a product of a squarefree number (A005117) and a coprime nonsquarefree number that is a squarefree number raised to an even power (A384517).
The asymptotic density of this sequence is Sum_{k>=1} (d(2*k)-1)/zeta(2) = 0.265530259454558018819..., where d(k) = zeta(k) * Product_{p prime} (1 + Sum_{i=k+1..2*k-1} (-1)^i/p^i).

Crossrefs

Intersection of A335275 and A375142.
Intersection of A368714 and A375142.
Equals A375142 \ A384520.
Subsequence of A013929 and A240112.
Subsequences: A067259, A384517.

Programs

  • Mathematica
    q[n_] := Module[{u = Union[Select[FactorInteger[n][[;; , 2]], # > 1 &]]}, Length[u] == 1 && EvenQ[u[[1]]]]; Select[Range[250], q]
  • PARI
    isok(k) = {my(e = select(x -> (x > 1), Set(factor(k)[, 2]))); #e == 1 && !(e[1] % 2);}
Previous Showing 11-20 of 101 results. Next