cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 101 results. Next

A375145 Numbers whose prime factorization has exactly one exponent that is larger than 2.

Original entry on oeis.org

8, 16, 24, 27, 32, 40, 48, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 120, 125, 128, 135, 136, 144, 152, 160, 162, 168, 176, 184, 189, 192, 200, 208, 224, 232, 240, 243, 248, 250, 256, 264, 270, 272, 280, 288, 296, 297, 304, 312, 320, 324, 328, 336, 343, 344
Offset: 1

Views

Author

Amiram Eldar, Aug 01 2024

Keywords

Comments

Subsequence of A046099 and first differs from it at n = 35: A046099(35) = 216 = 2^3 * 3^3 is not a term of this sequence.
The asymptotic density of this sequence is (1/zeta(3)) * Sum_{p prime} 1/(p^3-1) = A286229 / A002117 = 0.16148833663564192901... .

Examples

			8 = 2^3 is a term since its prime factorization has exactly one exponent, 3, that is larger than 2.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Count[FactorInteger[n][[;; , 2]], _?(# > 2 &)] == 1; Select[Range[350], q]
  • PARI
    is(k) = #select(x -> x > 2, factor(k)[, 2]) == 1;

A135544 Decimal expansion of (-1)^(I Pi).

Original entry on oeis.org

0, 0, 0, 0, 5, 1, 7, 2, 3, 1, 8, 6, 2, 0, 3, 8, 1, 2, 3, 0, 6, 1, 4, 5, 4, 6, 5, 0, 9, 0, 3, 8, 2, 3, 9, 3, 6, 9, 5, 5, 7, 8, 7, 6, 9, 6, 9, 8, 3, 6, 6, 8, 0, 8, 9, 4, 1, 4, 2, 7, 6, 5, 8, 8, 1, 8, 4, 7, 1, 6, 8, 3, 1, 5, 1, 0, 3, 2, 3, 0, 5, 6, 7, 6, 2, 0, 6, 8, 5, 5, 9, 8, 1, 9, 5, 3, 1, 9, 3, 3, 3
Offset: 0

Views

Author

Marvin Ray Burns, Feb 22 2008, Feb 23 2008

Keywords

Examples

			(-1)^(I*Pi) = exp(-Pi)^(Pi) = 0.000051723186...
		

Crossrefs

Programs

  • Mathematica
    N[(-1)^(I Pi), 1000] FullSimplify[(-1)^(I Pi) == Exp[ -Pi]^Pi == (Exp[ -(1/2)*Pi])^(2*Pi) == Sqrt[Exp[ -Pi]^Pi/(Exp[Pi]^Pi)] == Exp[(-1/2*Pi)]^(Gamma[1/6]*Gamma[5/6]) == 1/(Sqrt[Exp[Pi]^(2*Pi)]) == (Exp[ -(1/2)*Pi])^(2*Pi) == Exp[ -Pi^2]]
    Join[{0, 0, 0, 0}, RealDigits[(Exp[-Pi])^(Pi), 10, 96][[1]]] (* G. C. Greubel, Oct 18 2016 *)
  • PARI
    exp(-Pi^2) \\ Charles R Greathouse IV, Jan 23 2025
    
  • PARI
    real((-1)^(I*Pi)) \\ Charles R Greathouse IV, Jan 23 2025

Formula

a(n) = (-1)^(I Pi) = exp(-Pi)^Pi = (exp( -(1/2)*Pi))^(2*Pi) = sqrt(exp( -Pi)^Pi/(exp(Pi)^Pi)) = exp[(-1/2*Pi)]^(Gamma[1/6]*Gamma[5/6]) = 1/(sqrt[exp[Pi]^(2*Pi)]) = (exp[ -(1/2)*Pi])^(2*Pi) = exp[ -Pi^2].

Extensions

Offset corrected R. J. Mathar, Jan 26 2009

A336222 Numbers k such that the square root of the largest square dividing k has an even number of prime divisors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2020

Keywords

Comments

Numbers k such that A000188(k) is a term of A028260.
The squarefree numbers (A005117) are terms of this sequence since if k is squarefree, then A000188(k) = 1, 1 has 0 prime divisors, and 0 is even.
A number k is a term if and only if its powerful part, A057521(k), is a term.
The asymptotic density of this sequence is 7/10 (Cohen, 1964).
The corresponding sequence of numbers k such that the square root of the largest square dividing k has an even number of distinct prime divisors, i.e., numbers k such that A000188(k) is a term of A030231, is A333634.

Examples

			2 is a term since the largest square dividing 2 is 1, sqrt(1) = 1, 1 has 0 prime divisors, and 0 is even.
16 is a term since the largest square dividing 16 is 16, sqrt(16) = 4, 4 = 2 * 2 has 2 prime divisors, and 2 is even.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; Select[Range[100], EvenQ[PrimeOmega[Times @@ (f @@@ FactorInteger[#])]] &]

A336223 Numbers k such that the largest square dividing k is a unitary divisor of k and its square root has an even number of distinct prime divisors.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 100, 101, 102, 103
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2020

Keywords

Comments

First differs from A333634 at n = 47.
Terms k of A335275 such that A000188(k) is a term of A030231.
Numbers whose powerful part (A057521) is a square term of A030231.
The squarefree numbers (A005117) are terms of this sequence since if k is squarefree, then the largest square dividing k is 1 which is a unitary divisor, sqrt(1) = 1 has 0 prime divisors, and 0 is even.
The asymptotic density of this sequence is (Product_{p prime} (1 - 1/(p^2*(p+1))) + Product_{p prime} (1 - (2*p+1)/(p^2*(p+1))))/2 = (0.881513... + 0.394391...)/2 = 0.637952807730728551636349961980617856650450613867264... (Cohen, 1964; the first product is A065465).

Examples

			36 is a term since the largest square dividing 36 is 36, which is a unitary divisor, sqrt(36) = 6, 6 = 2 * 3 has 2 distinct prime divisors, and 2 is even.
		

Crossrefs

Intersection of A333634 and A335275.

Programs

  • Mathematica
    seqQ[n_] := EvenQ @ Length[(e = Select[FactorInteger[n][[;; , 2]], # > 1 &])] && AllTrue[e, EvenQ[#] &]; Select[Range[100], seqQ]

A368104 The number of bi-unitary divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 4, 2, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 12 2023

Keywords

Crossrefs

Similar sequences: A323308, A357669, A368106.

Programs

  • Mathematica
    f[p_, e_] := If[e == 1 || EvenQ[e], e, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x == 1 || !(x%2), x, x+1), factor(n)[, 2]));

Formula

a(n) = A286324(A057521(n)).
Multiplicative with a(p^e) = e if e is even or e = 1, and e + 1 otherwise.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A286324(n), with equality if and only if n is powerful (A001694).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 + 2/p^3 - 1/p^4) = 2.12258268547914758409... .

A368106 The number of infinitary divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 4, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 12 2023

Keywords

Crossrefs

Similar sequences: A323308, A357669, A368104.

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, 2^DigitCount[e, 2, 1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x == 1, 1, 2^hammingweight(x)), factor(n)[, 2]));

Formula

a(n) = A037445(A057521(n)).
Multiplicative with a(p) = 1 and a(p^e) = 2^A000120(e) for e >= 2.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A037445(n), with equality if and only if n is powerful (A001694).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.89684906463124350536..., where f(x) = (1-x) * (Product_{k>=0} (1 + 2*x^(2^k)) - x).

A370783 a(n) is the numerator of the sum of the reciprocals of the squarefree divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 02 2024

Keywords

Examples

			Fractions begin with: 1, 1, 1, 3/2, 1, 1, 1, 3/2, 4/3, 1, 1, 3/2, ...
		

Crossrefs

Cf. A005117, A057521, A157289, A295295, A332880, A370784 (denominators).

Programs

  • Mathematica
    a[n_] := Numerator[Times @@ (1 + 1/Select[FactorInteger[n], Last[#] > 1 &][[;; , 1]])]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); numerator(prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + 1/f[i,1])));}

Formula

a(n) = A332880(A057521(n)).
Let f(n) = a(n)/A370784(n):
f(n) is multiplicative with f(p) = 1 and f(p^e) = 1 + 1/p for e >= 2.
f(n) = 1 if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = zeta(3)/zeta(6) = 1.181564... (A157289) (Jakimczuk, 2024).

A370784 a(n) is the denominator of the sum of the reciprocals of the squarefree divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 5, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 7, 5, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 02 2024

Keywords

Crossrefs

Cf. A005117, A057521, A295295, A332881, A370783 (numerators).

Programs

  • Mathematica
    a[n_] := Denominator[Times @@ (1 + 1/Select[FactorInteger[n], Last[#] > 1 &][[;; , 1]])]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); denominator(prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + 1/f[i,1])));}

Formula

a(n) = A332881(A057521(n)).
a(n) = 1 if n is squarefree (A005117).

A375074 Numbers whose prime factorization exponents include at least one 2, at least one 3 and no higher exponents.

Original entry on oeis.org

72, 108, 200, 360, 392, 500, 504, 540, 600, 675, 756, 792, 936, 968, 1125, 1176, 1188, 1224, 1323, 1350, 1352, 1368, 1372, 1400, 1404, 1500, 1656, 1800, 1836, 1960, 2052, 2088, 2200, 2232, 2250, 2312, 2484, 2520, 2600, 2646, 2664, 2700, 2888, 2904, 2952, 3087
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2024

Keywords

Comments

Numbers whose powerful part (A057521) is a term of A375073.
The asymptotic density of this sequence is 1/zeta(4) - 1/zeta(3) + 1/zeta(2) - zeta(6)/(zeta(2) * zeta(3)) * c = A215267 - A088453 + A059956 - A068468 * c = 0.0156712080080470088619..., where c = Product_{p prime} (1 + 2/p^3 - 1/p^4 + 1/p^5).

Crossrefs

Equals A046100 \ (A004709 UNION A336591).
Disjoint union of A375073 and A375075.

Programs

  • Mathematica
    Select[Range[3000], Union[Select[FactorInteger[#][[;; , 2]], # > 1 &]] == {2, 3} &]
  • PARI
    is(k) = Set(select(x -> x > 1, factor(k)[,2])) == [2, 3];

Formula

A051903(a(n)) = 3.

A375144 Numbers whose prime factorization has exactly two exponents that equal 2 and has no higher exponents.

Original entry on oeis.org

36, 100, 180, 196, 225, 252, 300, 396, 441, 450, 468, 484, 588, 612, 676, 684, 700, 828, 882, 980, 1044, 1089, 1100, 1116, 1156, 1225, 1260, 1300, 1332, 1444, 1452, 1476, 1521, 1548, 1575, 1692, 1700, 1900, 1908, 1980, 2028, 2100, 2116, 2124, 2156, 2178, 2196
Offset: 1

Views

Author

Amiram Eldar, Aug 01 2024

Keywords

Comments

Numbers of the form m * p^2 * q^2, where p < q are primes, and m is a squarefree number such that gcd(m, p*q) = 1.
Numbers whose powerful part (A057521) is a square of a squarefree semiprime (A085986).
The asymptotic density of this sequence is ((Sum_{p prime} 1/(p*(p+1)))^2 - Sum_{p prime} 1/(p*(p+1))^2)/(2*zeta(2)) = 0.022124574473271163980012... .

Examples

			36 = 2^2 * 3^2 is a term since its prime factorization has exactly two exponents and both are equal to 2.
		

Crossrefs

Subsequence: A179643.

Programs

  • Mathematica
    q[n_] := Module[{e = Sort[FactorInteger[n][[;; , 2]], Greater]}, Length[e] > 1 && e[[1;;2]] == {2, 2} && If[Length[e] > 2, e[[3]] == 1, True]]; Select[Range[2200], q]
  • PARI
    is(k) = {my(e = vecsort(factor(k)[,2], , 4)~); #e > 1 && e[1..2] == [2,2] && if(#e > 2, e[3] == 1, 1);}
Previous Showing 81-90 of 101 results. Next