cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A076243 Remainder when 3rd-order prime ppp(n) = A038580(n) is divided by n.

Original entry on oeis.org

0, 1, 1, 3, 2, 5, 4, 3, 8, 9, 5, 7, 10, 5, 7, 3, 2, 11, 17, 1, 20, 21, 11, 19, 12, 17, 14, 17, 18, 19, 18, 23, 28, 27, 11, 19, 15, 7, 2, 21, 40, 25, 31, 1, 19, 15, 9, 31, 46, 47, 10, 15, 43, 23, 14, 9, 17, 19, 18, 41, 24, 27, 50, 3, 14, 29, 13, 3, 4, 39, 21, 1, 47, 19, 31, 13, 6, 17
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    MapIndexed[Mod[#1, First@ #2] &, Nest[Prime, Range@ 79, 3]] (* Michael De Vlieger, Jul 22 2017 *)

Formula

a(n) = ppp(n) mod n = A038580(n) mod n.

A087240 First differences of A087235.

Original entry on oeis.org

25, 87, 240, 774, 1960, 5378, 15828, 40420, 110477, 306255, 823267, 2219935, 6035446, 16314684, 44245201, 119849369, 324308909, 879921037, 2385657333, 6467079803, 17541637367, 47581552613, 129104928784, 350330765356, 950772205549, 2580621276899, 7005302330033
Offset: 2

Views

Author

Labos Elemer, Sep 04 2003

Keywords

Crossrefs

Formula

a(n)=A087235(n+1)-A087235(n)

Extensions

More terms from Giovanni Resta, Sep 01 2018

A256394 Prime values of pi(n) that divide n.

Original entry on oeis.org

2, 3, 11, 67, 71, 439, 1051, 6469, 40087, 100361, 100363, 251737, 251761, 637319, 637327, 4124459, 10553513, 10553551, 27067277, 69709733, 179993171, 465769817, 3140421769, 8179002109, 8179002133, 55762149029, 55762149071, 382465573489, 1003652347081
Offset: 1

Views

Author

Jonathan Sondow, Apr 13 2015

Keywords

Comments

a(n) is the largest prime factor of n, since pi(n) ~ n / log n.

Examples

			pi(6) = 3 is prime, and 3 divides 6, so 3 is a member.
		

Crossrefs

Programs

  • Mathematica
    c = 0; lpf[n_] := If[ PrimeQ[n], c++; n, Transpose[ FactorInteger[n]][[1, -1]]]; Do[ If[lpf[n] == c, Print[ PrimePi[n]]], {n, 2, 10^7}]
    PrimePi[Select[Select[Range[2,10^6],IntegerQ[#/PrimePi[#]]&],PrimeQ[PrimePi[#]]&]] (* Ivan N. Ianakiev, Apr 15 2015 *)
    Select[Table[{PrimePi[n],n},{n,10^6}],PrimeQ[#[[1]]]&&Divisible[#[[2]],#[[1]]]&][[All,1]] (* The program generates the first 9 terms of the sequence. To generate more, increase the constant for n. *) (* Harvey P. Dale, Feb 08 2022 *)
  • PARI
    for(n=1,10^6,if(isprime(p=primepi(n))&&!(n%primepi(n)),print1(p,", "))) \\ Derek Orr, Apr 14 2015

Formula

a(n) = A000720(A071394(n)) = A006530(A071394(n)).

Extensions

More terms from Giovanni Resta, Sep 01 2018

A076241 Remainder when 2nd order prime pp(n)=A006450(n) is divided by n.

Original entry on oeis.org

0, 1, 2, 1, 1, 5, 3, 3, 2, 9, 6, 1, 10, 9, 1, 1, 5, 13, 8, 13, 10, 5, 17, 5, 9, 1, 23, 27, 19, 17, 27, 3, 14, 15, 19, 13, 31, 17, 16, 31, 38, 37, 35, 27, 31, 21, 28, 17, 12, 47, 43, 43, 39, 31, 26, 45, 13, 1, 17, 23, 17, 53, 11, 15, 1, 53, 10, 25, 64, 41, 38, 41, 68, 33, 59, 63, 65
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime(NthPrime(n)) mod(n): n in [1..100]]; // Vincenzo Librandi, Jul 10 2017
  • Mathematica
    Table[Mod[Prime[Prime[n]], n], {n, 100}] (* Vincenzo Librandi, Jul 10 2017 *)
  • PARI
    a(n) = prime(prime(n)) % n; \\ Michel Marcus, Jul 09 2017
    

Formula

a(n) = A006450(n) mod n.

A076242 Remainder when 3rd order prime A038580(n) is divided by n-th prime=A000040(n).

Original entry on oeis.org

1, 2, 1, 3, 6, 10, 5, 8, 17, 19, 27, 31, 38, 35, 28, 39, 17, 17, 10, 38, 68, 63, 13, 55, 48, 4, 74, 100, 37, 29, 47, 121, 115, 136, 105, 28, 128, 109, 159, 90, 114, 31, 151, 4, 86, 108, 81, 147, 149, 189, 185, 119, 231, 166, 88, 238, 197, 233, 64, 186, 258, 111, 128, 260
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Mod[Prime[Prime[Prime[n]]],Prime[n]],{n,70}] (* Harvey P. Dale, Sep 28 2013 *)

Formula

a(n) = Mod[A038580(n), A000040(n)]

A087267 a(n) = gcd(n, pi(n)) where pi is A000720.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 1, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 4, 1, 2, 1, 3, 1, 1, 9, 1, 1, 10, 1, 1, 11, 1, 1, 1, 1, 2, 3, 4, 1, 1, 1, 2, 1, 2, 1, 3, 1, 5, 3, 1, 1, 2, 1, 8, 1, 2, 1, 1, 1, 2, 9, 2, 1, 6, 1, 1, 1, 1, 1, 4, 1, 1, 3, 1, 7, 3, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 4, 3, 2, 1, 24, 1, 1, 1, 25, 1, 2, 1
Offset: 1

Views

Author

Labos Elemer, Sep 16 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[w, PrimePi[w]], {w, 1, 256}]
  • PARI
    a(n) = gcd(n, primepi(n)); \\ Michel Marcus, Apr 22 2018

A087269 Nonprime solutions to gcd(x, pi(x)) = gcd(x, A000720(x)) = 1.

Original entry on oeis.org

1, 9, 12, 18, 21, 25, 26, 28, 32, 34, 35, 36, 42, 45, 49, 52, 55, 57, 60, 65, 68, 69, 70, 74, 76, 81, 84, 85, 86, 87, 88, 91, 95, 98, 99, 104, 106, 110, 111, 112, 119, 121, 128, 129, 130, 133, 135, 141, 143, 145, 147, 155, 158, 159, 160, 161, 162, 165, 170, 172, 177
Offset: 1

Views

Author

Labos Elemer, Sep 16 2003

Keywords

Comments

What is the density of this sequence? - David A. Corneth, Oct 21 2019

Examples

			There are 37 primes below the nonprime 162, so pi(162) = 37 and as gcd(162, pi(162)) = gcd(162, 37) = 1, 162 is in the sequence. - _David A. Corneth_, Oct 21 2019
		

Crossrefs

Programs

  • Mathematica
    t=Table[GCD[w, PrimePi[w]], {w, 1, 1000}]; f=Flatten[Position[t, 1]]; cf=Part[f, Flatten[Position[PrimeQ[f], False]]]
  • PARI
    first(n) = {n = max(n, 2); my(q = 2, i = 1, t = 1, res = vector(n)); res[1] = 1; forprime(p = 3, oo, for(j = q + 1, p - 1, if(gcd(t, j) == 1, i++; if(i <= n, res[i] = j; , return(res); ) ) ); t++; q = p ) } \\ David A. Corneth, Oct 21 2019

A058011 Consider the sequence {b(m)} of nonprimes; sequence gives values of m where gcd{m, b(m)} increases.

Original entry on oeis.org

1, 4, 6, 8, 27, 30, 33, 96, 100, 120, 330, 335, 340, 350, 355, 360, 1008, 1080, 1092, 1116, 1122, 1128, 1134, 3059, 3066, 3073, 3080, 3087, 3094, 8408, 8424, 8440, 8456, 8464, 8472, 23526, 23535, 24300, 64540, 64580, 64610, 64620, 64650, 64690, 64700
Offset: 0

Views

Author

Robert G. Wilson v, Nov 13 2000

Keywords

Examples

			a(4) = 8 because eight is the fourth nonprime number and GCD(4,8) > GCD(3,6).
		

Crossrefs

Cf. A058012. Apart from initial term same as A057809.

Programs

  • Mathematica
    r=0; Do[a = GCD[n, n - PrimePi[n] ]; If[a > r, r = a; Print[n]], {n, 1, 10^5} ]

A087268 Solutions to gcd(x, pi(x)) = 1, where pi is A000720.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 12, 13, 17, 18, 19, 21, 23, 25, 26, 28, 29, 31, 32, 34, 35, 36, 37, 41, 42, 43, 45, 47, 49, 52, 53, 55, 57, 59, 60, 61, 65, 67, 68, 69, 70, 71, 73, 74, 76, 79, 81, 83, 84, 85, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 103, 104, 106, 107, 109, 110, 111
Offset: 1

Views

Author

Labos Elemer, Sep 16 2003

Keywords

Examples

			All primes are included.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Table[GCD[w, PrimePi[w]], {w, 1, 256}], 1]]
  • PARI
    isok(n) = gcd(n, primepi(n)) == 1; \\ Michel Marcus, Apr 22 2018

A065136 Numbers n such that n = pi(n)*k + 1 for some k.

Original entry on oeis.org

3, 9, 11, 13, 28, 34, 37, 43, 121, 336, 341, 351, 356, 361, 1081, 1087, 1135, 3060, 3074, 3081, 3088, 3095, 8409, 8425, 8441, 8457, 8465, 8473, 23527, 23536, 24301, 64541, 64581, 64591, 64601, 64611, 64651, 64661, 64691, 64701, 64711, 64721
Offset: 1

Views

Author

Labos Elemer, Oct 15 2001

Keywords

Comments

Solutions to Mod[n,PrimePi[n]] = 1, i.e. A065134(n) = 1.

Examples

			n=28: Pi(28)=9 and 28=3*Pi(28)+1, so 28 is here; n=27 is present in A057809. A large proportion of A057809(m)+1 numbers (but not all of them) arise in this sequence. Numbers from A057809 arise in clusters [see grouping around 8450, 64650, 480900 etc.]
		

Crossrefs

Previous Showing 11-20 of 28 results. Next