cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 137 results. Next

A373674 Last element of each maximal run of powers of primes (including 1).

Original entry on oeis.org

5, 9, 11, 13, 17, 19, 23, 25, 27, 29, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2024

Keywords

Comments

A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The first element of the same run is A373673.
Consists of all powers of primes k such that k+1 is not a power of primes.

Examples

			The maximal runs of powers of primes begin:
   1   2   3   4   5
   7   8   9
  11
  13
  16  17
  19
  23
  25
  27
  29
  31  32
  37
  41
  43
  47
  49
		

Crossrefs

For prime antiruns we have A001359, min A006512, length A027833.
For composite runs we have A006093, min A008864, length A176246.
For prime runs we have A067774, min A025584, length A251092 or A175632.
For squarefree runs we have A373415, min A072284, length A120992.
For nonsquarefree runs we have min A053806, length A053797.
For runs of prime-powers:
- length A174965
- min A373673
- max A373674 (this sequence)
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    pripow[n_]:=n==1||PrimePowerQ[n];
    Max/@Split[Select[Range[nn],pripow],#1+1==#2&]//Most

A377286 Numbers k such that there are no prime-powers between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Examples

			Primes 18 and 19 are 61 and 67, and the interval (62, 63, 64, 65, 66) contains the prime-power 64, so 18 is not in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933(n) elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
These are the positions of 0 in A080101, or 1 in A366833.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
For at least one prime-power we have A377057.
For one instead of no prime-powers we have A377287.
For two instead of no prime-powers we have A377288.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==0&]
  • Python
    from itertools import count, islice
    from sympy import factorint, nextprime
    def A377286_gen(): # generator of terms
        p, q, k = 2, 3, 1
        for k in count(1):
            if all(len(factorint(i))>1 for i in range(p+1,q)):
                yield k
            p, q = q, nextprime(q)
    A377286_list = list(islice(A377286_gen(),66)) # Chai Wah Wu, Oct 27 2024

A376305 Run-compression of the sequence of first differences of squarefree numbers.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Sep 20 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The sequence of squarefree numbers (A005117) is:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
The run-compression is A376305 (this sequence).
		

Crossrefs

This is the run-compression of first differences of A005117.
For prime instead of squarefree numbers we have A037201, halved A373947.
Before compressing we had A076259, ones A375927.
For run-lengths instead of compression we have A376306.
For run-sums instead of compression we have A376307.
For prime-powers instead of squarefree numbers we have A376308.
For positions of first appearances instead of compression we have A376311.
The version for nonsquarefree numbers is A376312.
Positions of 1's are A376342.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed or anti-run compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    First/@Split[Differences[Select[Range[100],SquareFreeQ]]]

A377466 Numbers k such that there is more than one perfect power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

4, 9, 11, 30, 327, 445, 3512, 7789, 9361, 26519413
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Perfect powers (A001597) are numbers with a proper integer root, the complement of A007916.
Is this sequence finite?
The Redmond-Sun conjecture (see A308658) implies that this sequence is finite. - Pontus von Brömssen, Nov 05 2024

Examples

			Primes 9 and 10 are 23 and 29, and the interval (24,25,26,27,28) contains two perfect powers (25,27), so 9 is in the sequence.
		

Crossrefs

For powers of 2 see A013597, A014210, A014234, A188951, A244508, A377467.
For no prime-powers we have A377286, ones in A080101.
For a unique prime-power we have A377287.
For squarefree numbers see A377430, A061398, A377431, A068360, A224363.
These are the positions of terms > 1 in A377432.
For a unique perfect power we have A377434.
For no perfect powers we have A377436.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A046933 counts the interval from A008864(n) to A006093(n+1).
A081676 gives the greatest perfect power <= n.
A131605 lists perfect powers that are not prime-powers.
A246655 lists the prime-powers not including 1, complement A361102.
A366833 counts prime-powers between primes, see A053607, A304521.
A377468 gives the least perfect power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[100],Count[Range[Prime[#]+1, Prime[#+1]-1],_?perpowQ]>1&]
  • Python
    from itertools import islice
    from sympy import prime
    from gmpy2 import is_power, next_prime
    def A377466_gen(startvalue=1): # generator of terms >= startvalue
        k = max(startvalue,1)
        p = prime(k)
        while (q:=next_prime(p)):
            c = 0
            for i in range(p+1,q):
                if is_power(i):
                    c += 1
                    if c>1:
                        yield k
                        break
            k += 1
            p = q
    A377466_list = list(islice(A377466_gen(),9)) # Chai Wah Wu, Nov 04 2024

Formula

a(n) = A000720(A116086(n)) = A000720(A116455(n)) for n <= 10. This would hold for all n if there do not exist more than two perfect powers between any two consecutive primes, which is implied by the Redmond-Sun conjecture. - Pontus von Brömssen, Nov 05 2024

Extensions

a(10) from Pontus von Brömssen, Nov 04 2024

A067871 Number of primes between consecutive terms of A246547 (prime powers p^k, k >= 2).

Original entry on oeis.org

2, 0, 2, 3, 0, 2, 4, 3, 4, 8, 0, 1, 8, 14, 1, 7, 7, 4, 25, 2, 15, 15, 17, 16, 10, 45, 2, 44, 20, 26, 18, 0, 2, 28, 52, 36, 42, 32, 45, 45, 47, 19, 30, 106, 36, 35, 4, 114, 28, 135, 89, 42, 87, 42, 34, 66, 192, 106, 56, 23, 39, 37, 165, 49, 37, 262, 58, 160, 22
Offset: 1

Views

Author

Jon Perry, Mar 07 2002

Keywords

Comments

Does this sequence have any terms appearing infinitely often? In particular, are {2, 5, 11, 32, 77} the only zeros? As an example, {121, 122, 123, 124, 125} is an interval containing no primes, corresponding to a(11) = 0. - Gus Wiseman, Dec 02 2024

Examples

			The first few prime powers A246547 are 4, 8, 9, 16. The first few primes are 2, 3, 5, 7, 11, 13. We have (4), 5, 7, (8), (9), 11, 13, (16) and so the sequence begins with 2, 0, 2.
The initial terms count the following sets of primes: {5,7}, {}, {11,13}, {17,19,23}, {}, {29,31}, {37,41,43,47}, ... - _Gus Wiseman_, Dec 02 2024
		

Crossrefs

For primes between nonsquarefree numbers we have A236575.
For composite instead of prime we have A378456.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A080101 counts prime powers between primes.
A246547 lists the non prime prime powers, differences A053707.
A246655 lists the prime powers not including 1, complement A361102.

Programs

  • Mathematica
    t = {}; cnt = 0; Do[If[PrimePowerQ[n], If[FactorInteger[n][[1, 2]] == 1, cnt++, AppendTo[t, cnt]; cnt = 0]], {n, 4 + 1, 30000}]; t (* T. D. Noe, May 21 2013 *)
    nn = 2^20; Differences@ Map[PrimePi, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], PrimePowerQ] ] (* Michael De Vlieger, Oct 26 2023 *)

Formula

a(n) = A000720(A025475(n+3)) - A000720(A025475(n+2)). - David Wasserman, Dec 20 2002

Extensions

More terms from David Wasserman, Dec 20 2002
Definition clarified by N. J. A. Sloane, Oct 27 2023

A375714 Positions of non-successions of consecutive non-perfect-powers. Numbers k such that the k-th non-perfect-power is at least two fewer than the next.

Original entry on oeis.org

2, 5, 11, 19, 20, 24, 27, 39, 53, 69, 87, 107, 110, 112, 127, 151, 177, 196, 204, 221, 233, 265, 299, 317, 334, 372, 412, 454, 481, 497, 543, 591, 641, 693, 747, 803, 861, 921, 959, 982, 1046, 1112, 1180, 1250, 1284, 1321, 1395, 1471, 1549, 1629, 1675, 1710
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.

Examples

			The initial non-perfect-powers are 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, which increase by more than one after term 2, term 5, term 11, etc.
		

Crossrefs

First differences are A375702.
Positions of terms > 1 in A375706 (differences of A007916).
The complement for non-prime-powers is A375713, differences A373672.
The complement is A375740.
The version for non-prime-powers is A375928, differences A110969.
Prime-powers inclusive:
- terms: A000961
- differences: A057820
Non-prime-powers inclusive:
- terms: A361102
- differences: A375708

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    ce=Select[Range[100],radQ];
    Select[Range[Length[ce]-1],!ce[[#+1]]==ce[[#]]+1&]
  • Python
    from itertools import count, islice
    from sympy import perfect_power
    def A375714_gen(): # generator of terms
        a, b = -1, 0
        for n in count(1):
            c = not perfect_power(n)
            if c:
                a += 1
            if b&(c^1):
                yield a
            b = c
    A375714_list = list(islice(A375714_gen(),52)) # Chai Wah Wu, Sep 11 2024

Formula

A007916(a(n)+1) - A007916(a(n)) > 1.

A376306 Run-lengths of the sequence of first differences of squarefree numbers.

Original entry on oeis.org

2, 1, 2, 1, 1, 1, 2, 3, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 21 2024

Keywords

Examples

			The sequence of squarefree numbers (A005117) is:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
with runs:
  (1,1),(2),(1,1),(3),(1),(2),(1,1),(2,2,2),(1,1),(3,3),(1,1),(2),(1,1), ...
with lengths A376306 (this sequence).
		

Crossrefs

Run-lengths of first differences of A005117.
Before taking run-lengths we had A076259, ones A375927.
For prime instead of squarefree numbers we have A333254.
For compression instead of run-lengths we have A376305.
For run-sums instead of run-lengths we have A376307.
For prime-powers instead of squarefree numbers we have A376309.
For positions of first appearances instead of run-lengths we have A376311.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, first differences A057820.
A003242 counts compressed or anti-run compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Length/@Split[Differences[Select[Range[100],SquareFreeQ]]]

A376312 Run-compression of first differences (A078147) of nonsquarefree numbers (A013929).

Original entry on oeis.org

4, 1, 3, 4, 2, 4, 1, 2, 1, 4, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 4, 1, 3, 4, 2, 4, 2, 1, 4, 1, 3, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 2, 1, 3, 4, 2, 4, 1, 2, 1, 3, 1, 4, 1, 3, 4, 2, 4, 3, 1, 4, 1, 3, 4, 2, 4, 2, 1, 3, 2, 4, 1, 3, 4, 2, 3, 1, 3, 1, 4, 1, 3, 2, 1, 3, 4, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, we can remove all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The sequence of nonsquarefree numbers (A013929) is:
  4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, ...
with first differences (A078147):
  4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, ...
with runs:
  (4),(1),(3),(4),(2,2),(4),(1),(2),(1),(4,4,4,4),(1),(3),(1,1),(2,2,2), ...
and run-compression (A376312):
  4, 1, 3, 4, 2, 4, 1, 2, 1, 4, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 4, 1, 3, 4, ...
		

Crossrefs

For nonprime instead of squarefree numbers we have A037201, halved A373947.
Before compressing we had A078147.
For run-sums instead of compression we have A376264.
For squarefree instead of nonsquarefree we have A376305, ones A376342.
For prime-powers instead of nonsquarefree numbers we have A376308.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259 (ones A375927).
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.

Programs

  • Mathematica
    First/@Split[Differences[Select[Range[100], !SquareFreeQ[#]&]]]

A377054 First term of the n-th differences of the powers of primes. Inverse zero-based binomial transform of A000961.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, -5, 15, -34, 63, -97, 115, -54, -251, 1184, -3536, 8736, -18993, 37009, -64545, 98442, -121393, 82008, 147432, -860818, 2710023, -7110594, 17077281, -38873146, 85085287, -179965647, 367885014, -725051280, 1372311999, -2481473550, 4257624252
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2024

Keywords

Examples

			The sixth differences of A000961 begin: -5, 10, -9, 1, 6, -10, 16, -18, ..., so a(6) = -5.
		

Crossrefs

The version for primes is A007442, noncomposites A030016, composites A377036.
For squarefree numbers we have A377041, nonsquarefree A377049.
This is the first column of the array A377051.
For antidiagonal-sums we have A377052, absolute A377053.
For positions of first zeros we have A377055.
A000040 lists the primes, differences A001223, seconds A036263.
A000961 lists the powers of primes, differences A057820.
A001597 lists perfect-powers, complement A007916.
A008578 lists the noncomposites, differences A075526.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.

Programs

  • Mathematica
    q=Select[Range[100],#==1||PrimePowerQ[#]&];
    Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[1+k]],{k,0,j}],{j,0,Length[q]/2}]

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), q(2), ...) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k)*binomial(j,k)*q(k)

A377703 First differences of the sequence A345531(k) = least prime-power greater than the k-th prime.

Original entry on oeis.org

1, 3, 1, 5, 3, 3, 4, 2, 6, 1, 9, 2, 4, 2, 10, 2, 3, 7, 2, 6, 2, 8, 8, 4, 2, 4, 2, 4, 8, 7, 9, 2, 10, 2, 6, 6, 4, 2, 10, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 13, 7, 6, 2, 6, 4, 2, 6, 18, 4, 2, 4, 14, 6, 6, 6, 4, 6, 2, 12, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6
Offset: 1

Views

Author

Gus Wiseman, Nov 07 2024

Keywords

Comments

What is the union of this sequence? In particular, does it contain 17?

Crossrefs

First differences of A345531.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A080101 counts prime-powers between primes (exclusive).
A246655 lists the prime-powers, differences A057820 without first term.
A361102 lists the non-powers of primes, differences A375708.
A366833 counts prime-powers between primes, see A053607, A304521, A377057 (positive), A377286 (zero), A377287 (one), A377288 (two).
A377432 counts perfect-powers between primes, see A377434 (one), A377436 (zero), A377466 (multiple).

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&, Prime[n]+1,!PrimePowerQ[#]&],{n,100}]]
  • Python
    from sympy import factorint, prime, nextprime
    def A377703(n): return -next(filter(lambda m:len(factorint(m))<=1, count((p:=prime(n))+1)))+next(filter(lambda m:len(factorint(m))<=1, count(nextprime(p)+1))) # Chai Wah Wu, Nov 14 2024
Previous Showing 41-50 of 137 results. Next