cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A196389 Triangle T(n,k), read by rows, given by (0,1,-1,0,0,0,0,0,0,0,...) DELTA (1,0,0,1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 0, 3, 1, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Oct 28 2011

Keywords

Comments

Row sums are A028310; diagonal sums are A057979; column sums are A000027.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 1;
  0, 0, 2, 1;
  0, 0, 0, 3, 1;
  0, 0, 0, 0, 4, 1;
  0, 0, 0, 0, 0, 5, 1;
  0, 0, 0, 0, 0, 0, 6, 1;
  0, 0, 0, 0, 0, 0, 0, 7, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 8, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 1; ...
		

Crossrefs

Cf. A084938.

Formula

T(n,n)=1, T(n+1,n)=n.
G.f.: (1-x*y+x^2*y)/(1-x*y)^2. - Philippe Deléham, Oct 31 2011
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A028310(n), A057711(n+1), A064017(n+1) for x = 0, 1, 2, 3 respectively. - Philippe Deléham, Oct 31 2011

A109094 Length of the longest path (repeated edges not allowed) between two arbitrary, distinct nodes in K_n, the complete graph on n vertices.

Original entry on oeis.org

0, 1, 2, 5, 9, 13, 20, 25, 35, 41, 54, 61, 77, 85, 104, 113, 135, 145, 170, 181, 209, 221, 252, 265, 299, 313, 350, 365, 405, 421, 464, 481, 527, 545, 594, 613, 665, 685, 740, 761, 819, 841, 902, 925, 989, 1013, 1080, 1105, 1175, 1201, 1274, 1301, 1377, 1405
Offset: 1

Views

Author

Ryan Propper, Jun 18 2005

Keywords

Examples

			a(4) = 5 because the length of the longest path between any two distinct vertices in K_4 is 5.
		

Crossrefs

Formula

a(1)=0; a(2n+1) = n*(n-1)/2-1 = A014107(n+1), n>0; a(2n)=n*(n-2)/2+1= A001844(n-1). - Martin Fuller, R. J. Mathar and Mitch Harris, Dec 06 2007
O.g.f.: x^2*(x^4-2*x^3-x^2-x-1)/((-1+x)^3 *(x+1)^2) . - R. J. Mathar, Jan 17 2008

A179820 a(n) = n-th triangular number mod (n+2).

Original entry on oeis.org

0, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, 1, 40, 1, 41, 1, 42, 1, 43, 1, 44, 1, 45
Offset: 0

Views

Author

Zak Seidov, Jul 28 2010

Keywords

Crossrefs

Essentially the same as A133622.

Programs

  • Mathematica
    Table[Mod[n(n+1)/2,n+2],{n,0,200}]
    LinearRecurrence[{0,2,0,-1},{0,1,3,1,4},110] (* or *) Join[{0,1},Riffle[Range[3,50],1]] (* Harvey P. Dale, Apr 02 2024 *)

Formula

a(0)=0, afterwards if n is odd then a(n)=1 else a(n)=(n+4)/2
a(0)=0, afterwards a(n)=1 for odd n and n/2+2 for even n.
a(n)= +2*a(n-2) -a(n-4), n>4. a(n) = (6+n*((-1)^n+1)+2*(-1)^n)/4, n>0. G.f.: -x*(-1-3*x+x^2+2*x^3) / ( (x-1)^2*(1+x)^2 ). [From R. J. Mathar, Aug 03 2010]

A374440 Triangle read by rows: T(n, k) = T(n - 1, k) + T(n - 2, k - 2), with boundary conditions: if k = 0 or k = 2 then T = 1; if k = 1 then T = n - 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 3, 1, 1, 1, 1, 4, 1, 3, 2, 0, 1, 5, 1, 6, 3, 1, 1, 1, 6, 1, 10, 4, 4, 3, 0, 1, 7, 1, 15, 5, 10, 6, 1, 1, 1, 8, 1, 21, 6, 20, 10, 5, 4, 0, 1, 9, 1, 28, 7, 35, 15, 15, 10, 1, 1, 1, 10, 1, 36, 8, 56, 21, 35, 20, 6, 5, 0
Offset: 0

Views

Author

Peter Luschny, Jul 21 2024

Keywords

Comments

Member of the family of Lucas-Fibonacci polynomials.

Examples

			Triangle starts:
  [ 0]  1;
  [ 1]  1,  0;
  [ 2]  1,  1,  1;
  [ 3]  1,  2,  1,  0;
  [ 4]  1,  3,  1,  1,  1;
  [ 5]  1,  4,  1,  3,  2,  0;
  [ 6]  1,  5,  1,  6,  3,  1,  1;
  [ 7]  1,  6,  1, 10,  4,  4,  3,  0;
  [ 8]  1,  7,  1, 15,  5, 10,  6,  1,  1;
  [ 9]  1,  8,  1, 21,  6, 20, 10,  5,  4,  0;
  [10]  1,  9,  1, 28,  7, 35, 15, 15, 10,  1, 1;
		

Crossrefs

Cf. A374441.
Cf. A000032 (Lucas), A001611 (even sums, Fibonacci + 1), A000071 (odd sums, Fibonacci - 1), A001911 (alternating sums, Fibonacci(n+3) - 2), A025560 (row lcm), A073028 (row max), A117671 & A025174 (central terms), A057979 (subdiagonal), A000217 (column 3).

Programs

  • Maple
    T := proc(n, k) option remember; if k = 0 or k = 2 then 1 elif k > n then 0
    elif k = 1 then n - 1 else T(n - 1, k) + T(n - 2, k - 2) fi end:
    seq(seq(T(n, k), k = 0..n), n = 0..9);
    T := (n, k) -> ifelse(k = 0, 1, binomial(n - floor(k/2), ceil(k/2)) -
    binomial(n - ceil((k + irem(k + 1, 2))/2), floor(k/2))):

Formula

T(n, k) = binomial(n - floor(k/2), ceiling(k/2)) - binomial(n - ceiling((k + even(k))/2), floor(k/2)) if k > 0, T(n, 0) = 1, where even(k) = 1 if k is even, otherwise 0.
Columns with odd index agree with the odd indexed columns of A374441.

A115955 Product of A115952 and summing matrix (1/(1-x),x).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Paul Barry, Feb 02 2006

Keywords

Comments

Row sums are A057979(n+3).

Examples

			Triangle begins
1,
0, 1,
0, 1, 1,
0, 0, 0, 1,
0, 0, 1, 1, 1,
0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1
		

A368684 Number of partitions of n into 2 parts such that the smaller part divides both n and floor(n/2).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 6, 1, 2, 1, 4, 1, 4, 1, 5, 1, 2, 1, 6, 1, 2, 1, 6, 1, 4, 1, 4, 1, 2, 1, 8, 1, 3, 1, 4, 1, 4, 1, 6, 1, 2, 1, 8, 1, 2, 1, 6, 1, 4, 1, 4, 1, 4, 1, 9, 1, 2, 1, 4, 1, 4, 1, 8, 1, 2, 1, 8, 1, 2, 1, 6, 1, 6
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 03 2024

Keywords

Comments

Essentially, A000005 interspersed with 1's [prepend 0].
Number of divisors of A057979(n+1) for n >= 2.

Crossrefs

Bisections: A060576, A000005.

Programs

  • Maple
    with(numtheory): 0, seq(2*tau(n) - tau(2*n) + (n mod 2), n=2..100); # Ridouane Oudra, Jan 18 2025
  • Mathematica
    Join[{0}, Table[DivisorSigma[0, (n+2+(n-2)*(-1)^n)/4], {n, 2, 100}]]
  • PARI
    a(n) = if(n == 1, 0, numdiv((n+2+(n-2)*(-1)^n)/4)); \\ Amiram Eldar, Jan 28 2025

Formula

a(n) = A000005(A057979(n+1)) for n >= 2.
a(2n-1) = A060576(n), a(2n) = A000005(n).
a(n) = d(floor((n+1)/2))^((n+1) mod 2), for n >= 2.
a(n) = d( (n+2+(n-2)*(-1)^n)/4 ) for n >= 2.
a(n) = Sum_{k=1..floor(n/2)} c(n/k) * c(floor(n/2)/k), where c(m) = 1 - ceiling(m) + floor(m).
a(n) = A000005(n) - A091954(n), for n > 1. - Ridouane Oudra, Jan 18 2025
Sum_{k=1..n} a(k) ~ (log(n/2) + 2*gamma)*n/2, where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 28 2025
Previous Showing 11-16 of 16 results.