A196389
Triangle T(n,k), read by rows, given by (0,1,-1,0,0,0,0,0,0,0,...) DELTA (1,0,0,1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 0, 3, 1, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 0, 2, 1;
0, 0, 0, 3, 1;
0, 0, 0, 0, 4, 1;
0, 0, 0, 0, 0, 5, 1;
0, 0, 0, 0, 0, 0, 6, 1;
0, 0, 0, 0, 0, 0, 0, 7, 1;
0, 0, 0, 0, 0, 0, 0, 0, 8, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 1; ...
A109094
Length of the longest path (repeated edges not allowed) between two arbitrary, distinct nodes in K_n, the complete graph on n vertices.
Original entry on oeis.org
0, 1, 2, 5, 9, 13, 20, 25, 35, 41, 54, 61, 77, 85, 104, 113, 135, 145, 170, 181, 209, 221, 252, 265, 299, 313, 350, 365, 405, 421, 464, 481, 527, 545, 594, 613, 665, 685, 740, 761, 819, 841, 902, 925, 989, 1013, 1080, 1105, 1175, 1201, 1274, 1301, 1377, 1405
Offset: 1
a(4) = 5 because the length of the longest path between any two distinct vertices in K_4 is 5.
A179820
a(n) = n-th triangular number mod (n+2).
Original entry on oeis.org
0, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, 1, 40, 1, 41, 1, 42, 1, 43, 1, 44, 1, 45
Offset: 0
-
Table[Mod[n(n+1)/2,n+2],{n,0,200}]
LinearRecurrence[{0,2,0,-1},{0,1,3,1,4},110] (* or *) Join[{0,1},Riffle[Range[3,50],1]] (* Harvey P. Dale, Apr 02 2024 *)
A374440
Triangle read by rows: T(n, k) = T(n - 1, k) + T(n - 2, k - 2), with boundary conditions: if k = 0 or k = 2 then T = 1; if k = 1 then T = n - 1.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 3, 1, 1, 1, 1, 4, 1, 3, 2, 0, 1, 5, 1, 6, 3, 1, 1, 1, 6, 1, 10, 4, 4, 3, 0, 1, 7, 1, 15, 5, 10, 6, 1, 1, 1, 8, 1, 21, 6, 20, 10, 5, 4, 0, 1, 9, 1, 28, 7, 35, 15, 15, 10, 1, 1, 1, 10, 1, 36, 8, 56, 21, 35, 20, 6, 5, 0
Offset: 0
Triangle starts:
[ 0] 1;
[ 1] 1, 0;
[ 2] 1, 1, 1;
[ 3] 1, 2, 1, 0;
[ 4] 1, 3, 1, 1, 1;
[ 5] 1, 4, 1, 3, 2, 0;
[ 6] 1, 5, 1, 6, 3, 1, 1;
[ 7] 1, 6, 1, 10, 4, 4, 3, 0;
[ 8] 1, 7, 1, 15, 5, 10, 6, 1, 1;
[ 9] 1, 8, 1, 21, 6, 20, 10, 5, 4, 0;
[10] 1, 9, 1, 28, 7, 35, 15, 15, 10, 1, 1;
Cf.
A000032 (Lucas),
A001611 (even sums, Fibonacci + 1),
A000071 (odd sums, Fibonacci - 1),
A001911 (alternating sums, Fibonacci(n+3) - 2),
A025560 (row lcm),
A073028 (row max),
A117671 &
A025174 (central terms),
A057979 (subdiagonal),
A000217 (column 3).
-
T := proc(n, k) option remember; if k = 0 or k = 2 then 1 elif k > n then 0
elif k = 1 then n - 1 else T(n - 1, k) + T(n - 2, k - 2) fi end:
seq(seq(T(n, k), k = 0..n), n = 0..9);
T := (n, k) -> ifelse(k = 0, 1, binomial(n - floor(k/2), ceil(k/2)) -
binomial(n - ceil((k + irem(k + 1, 2))/2), floor(k/2))):
A115955
Product of A115952 and summing matrix (1/(1-x),x).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Triangle begins
1,
0, 1,
0, 1, 1,
0, 0, 0, 1,
0, 0, 1, 1, 1,
0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1
A368684
Number of partitions of n into 2 parts such that the smaller part divides both n and floor(n/2).
Original entry on oeis.org
0, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 6, 1, 2, 1, 4, 1, 4, 1, 5, 1, 2, 1, 6, 1, 2, 1, 6, 1, 4, 1, 4, 1, 2, 1, 8, 1, 3, 1, 4, 1, 4, 1, 6, 1, 2, 1, 8, 1, 2, 1, 6, 1, 4, 1, 4, 1, 4, 1, 9, 1, 2, 1, 4, 1, 4, 1, 8, 1, 2, 1, 8, 1, 2, 1, 6, 1, 6
Offset: 1
-
with(numtheory): 0, seq(2*tau(n) - tau(2*n) + (n mod 2), n=2..100); # Ridouane Oudra, Jan 18 2025
-
Join[{0}, Table[DivisorSigma[0, (n+2+(n-2)*(-1)^n)/4], {n, 2, 100}]]
-
a(n) = if(n == 1, 0, numdiv((n+2+(n-2)*(-1)^n)/4)); \\ Amiram Eldar, Jan 28 2025
Comments