A259224
Initial primes in sets of 4 consecutive primes with common gap 54.
Original entry on oeis.org
400948369, 473838319, 583946599, 678953059, 816604199, 972598819, 1136526949, 1466715139, 1475790529, 1499794999, 1502149559, 1610895679, 1643313869, 1673057219, 1686181579, 1845792019, 1867046639, 1907478889, 1992202439, 2011077869, 2030490479, 2207714969
Offset: 1
Subsequence of
A054800: start of a CPAP-4 with arbitrary common difference.
-
A259224(n, p=2, v=1, g=54, c, o)={forprime(q=p+1, , if(p+g!=p=q, next, q!=o+2*g, c=2, c++>3, v&& print1(o-g", "); n--||break); o=q-g); o-g} \\ Can be used as next(p)=A259224(1,p+1) to get the next term, e.g.:
p=0; A259224_vec=vector(10,i,p=A259224(1,p+1)) \\ Will be slow! - M. F. Hasler, Oct 26 2018
A058362
Initial primes of sets of 6 consecutive primes in arithmetic progression.
Original entry on oeis.org
121174811, 1128318991, 2201579179, 2715239543, 2840465567, 3510848161, 3688067693, 3893783651, 5089850089, 5825680093, 6649068043, 6778294049, 7064865859, 7912975891, 8099786711, 9010802341, 9327115723, 9491161423, 9544001791, 10101930253, 10523406343, 13193702321
Offset: 1
Harvey Dubner (harvey(AT)dubner.com), Dec 18 2000
Cf.
A006560: first prime to start a CPAP-n.
Cf.
A033451,
A033447,
A033448,
A052242,
A052243,
A058252,
A058323,
A067388: start of CPAP-4 with common difference 6, 12, 18, ..., 48.
Cf.
A054800: start of 4 consecutive primes in arithmetic progression (CPAP-4).
Cf.
A052239: starting prime of first CPAP-4 with common difference 6n.
Cf.
A059044: starting primes of CPAP-5.
Cf.
A210727: starting primes of CPAP-5 with common difference 60.
-
p=c=g=P=0;forprime(q=1,, p+g==(p+=g=q-p)|| next; q==P+2*g&& c++|| c=3; c>5&& print1(P-3*g,","); P=q-g) \\ M. F. Hasler, Oct 26 2018
Comment split off from Name (to clarify definition) by
M. F. Hasler, Oct 27 2018
A161534
The smallest of four consecutive primes where all three gaps are perfect squares.
Original entry on oeis.org
255763, 604441, 651361, 884497, 913063, 1065133, 1320211, 1526191, 2130133, 2376721, 2907727, 2911933, 2974891, 3190597, 3603583, 3690151, 3707497, 3962941, 4209643, 4245643, 4706101, 5057671, 5155567, 5223187, 5260711, 5321191, 5325571, 5410627
Offset: 1
a(2) = 604441, the smallest of the consecutive primes 604441, 604477, 604481, 604517, with gaps of 36, 4 and 36, all perfect squares.
-
PerfectSquareQ[n_] := JacobiSymbol[n, 13] =!= -1 && JacobiSymbol[n, 19] =!= -1 && JacobiSymbol[n, 17] =!= -1 && JacobiSymbol[n, 23] =!= -1 && IntegerQ[Sqrt[n]]; t = {}; n = 3; p1 = 1; p2 = 2; p3 = 3; p4 = 5; While[Length[t] < 30, n++; p1 = p2; p2 = p3; p3 = p4; p4 = Prime[n]; If[PerfectSquareQ[p2 - p1] && PerfectSquareQ[p3 - p2] && PerfectSquareQ[p4 - p3], AppendTo[t, p1]]]; t (* T. D. Noe, Jul 09 2013 *)
Transpose[Select[Partition[Prime[Range[400000]],4,1],And@@IntegerQ/@ Sqrt[ Differences[#]]&]][[1]] (* Harvey P. Dale, Mar 24 2014 *)
A287547
Initial prime in set of 4 consecutive primes in arithmetic progression with difference 66.
Original entry on oeis.org
1140813701, 1314331181, 1729804331, 2615969891, 2765625631, 3827771821, 4266876641, 4348917061, 4700742041, 4845745831, 4877408441, 5311420901, 5395463741, 5409482081, 5693097391, 5816498981, 5902417331, 6173160871, 6692523011, 6914652461, 6960900641
Offset: 1
A287550
Initial prime in set of 4 consecutive primes in arithmetic progression with difference 72.
Original entry on oeis.org
491525857, 1470227987, 2834347387, 4314407477, 4766711387, 6401372837, 6871241197, 8971400797, 10168905497, 11776429517, 11871902557, 14538547967, 14925896087, 15218517367, 15646776877, 15875854927, 17310026197, 17942416307, 18347931587, 19241492057, 19379888947
Offset: 1
-
from gmpy2 import is_prime, next_prime
A287550_list, p = [], 2
q, r, s = p+72, p+144, p+216
while s <= 10**10:
np = next_prime(p)
if np == q and is_prime(r) and is_prime(s) and next_prime(q) == r and next_prime(r) == s:
A287550_list.append(p)
p, q, r, s = np, np+72, np+144, np+216 # Chai Wah Wu, Jun 03 2017
Comments