cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A035113 Numbers != 2 (mod 4) listed in order of increasing totient function phi (A000010).

Original entry on oeis.org

1, 3, 4, 5, 8, 12, 7, 9, 15, 16, 20, 24, 11, 13, 21, 28, 36, 17, 32, 40, 48, 60, 19, 27, 25, 33, 44, 23, 35, 39, 45, 52, 56, 72, 84, 29, 31, 51, 64, 68, 80, 96, 120, 37, 57, 63, 76, 108, 41, 55, 75, 88, 100, 132, 43, 49, 69, 92, 47, 65, 104, 105, 112, 140, 144
Offset: 1

Views

Author

Keywords

Examples

			phi(1)=1, phi(3)=2, phi(4)=2, phi(5)=4, ...
		

Crossrefs

Programs

  • Python
    from sympy import totient as A000010
    def lov(n): return sorted([[A000010(n), n] for n in range(1,n) if n%4 != 2])
    print([x[1] for x in lov(200)][:100]) # Dumitru Damian, Feb 01 2022

Extensions

More terms from James Sellers
a(43) onward corrected by Sean A. Irvine, Sep 26 2020

A035114 Values of phi(n) corresponding to A035113.

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 6, 6, 8, 8, 8, 8, 10, 12, 12, 12, 12, 16, 16, 16, 16, 16, 18, 18, 20, 20, 20, 22, 24, 24, 24, 24, 24, 24, 24, 28, 30, 32, 32, 32, 32, 32, 32, 36, 36, 36, 36, 36, 40, 40, 40, 40, 40, 40, 42, 42, 44, 44, 46, 48, 48, 48, 48, 48, 48, 48, 48, 48
Offset: 1

Views

Author

Keywords

Examples

			phi(1)=1, phi(3)=2, phi(4)=2, phi(5)=4, ...
		

Crossrefs

Programs

  • Python
    from sympy import totient as A000010
    def lov(n): return sorted([[A000010(n), n] for n in range(1,n) if n%4 != 2])
    print([x[0] for x in lov(200)][:100]) # Dumitru Damian, Feb 03 2022

Formula

a(n) = A000010(A035113(n)). - Michel Marcus, Feb 07 2022

Extensions

More terms from James Sellers
a(43) onward corrected by Sean A. Irvine, Sep 26 2020

A071387 Smallest number k for which the set of solutions to phi(x) = k has 2n-1 entries.

Original entry on oeis.org

0, 2, 8, 32, 40, 48, 396, 704, 72, 216, 144, 1056, 360, 384, 1320, 240, 9000, 7128, 480, 1296, 15936, 3072, 864, 7344, 720, 4992, 2016, 6000, 4752, 3024, 9984, 1920, 7560, 22848, 29160, 3360, 13248, 27720, 9072, 9360, 4032, 4800, 16896, 3840, 9504, 23520, 5040
Offset: 1

Views

Author

Labos Elemer, May 23 2002

Keywords

Examples

			For n = 7: 2n-1 = 13, a(7) = Min(InvPhi(13)) = Min({396,400,420,552,560,660}) = 396.
		

Crossrefs

Programs

  • PARI
    a(n) = {if (n==1, return (0)); my(k=1); while(#invphi(k) != 2*n-1, k++); k;} \\ Michel Marcus, May 13 2020

Formula

a(n) = Min({x; Card(InvPhi(x)) = 2n-1}); a(1)=0 because of Carmichael conjecture.

Extensions

a(12)-a(47) from Donovan Johnson, Jul 27 2011

A071388 Numbers k such that the cardinality of the set of solutions to phi(x) = k is a prime.

Original entry on oeis.org

1, 2, 8, 10, 20, 22, 28, 30, 32, 44, 46, 48, 52, 54, 56, 58, 66, 70, 72, 78, 82, 92, 96, 102, 104, 106, 110, 116, 120, 126, 130, 132, 136, 138, 140, 148, 150, 156, 164, 166, 172, 178, 190, 196, 198, 204, 210, 212, 216, 220, 222, 226, 228, 238, 240, 250, 260, 262
Offset: 1

Views

Author

Labos Elemer, May 23 2002

Keywords

Comments

All terms except 1 are even. - Robert Israel, Mar 29 2020

Examples

			InvPhi(48) = {65,104,105,112,130,140,144,156,168,180,210} has 11 terms, so 48 is a term.
		

Crossrefs

Programs

  • Maple
    filter:= n -> isprime(nops(numtheory:-invphi(n))):
    select(filter, [$1..400]); # Robert Israel, Mar 29 2020
  • PARI
    is(k) = isprime(invphiNum(k)); \\ Amiram Eldar, Nov 15 2024, using Max Alekseyev's invphi.gp

A071389 Least number m such that cardinality of InvPhi(m) = prime(n).

Original entry on oeis.org

1, 2, 8, 32, 48, 396, 72, 216, 1056, 1320, 240, 480, 15936, 3072, 7344, 2016, 3024, 9984, 22848, 3360, 13248, 9360, 4800, 9504, 9216, 23328, 7680, 53280, 12480, 29376, 91200, 159744, 22464, 228960, 29952, 179200, 47040, 68544, 15840, 20736, 61440
Offset: 1

Views

Author

Labos Elemer, May 23 2002

Keywords

Examples

			For n = 11: prime(11) = 31, Card(InvPhi(x)) = 31 for {240, 672, ...}; the smallest is 240 = a(11).
		

Crossrefs

Programs

  • PARI
    lista(len) = {my(p = prime(len), v = vector(p, i, -!isprime(i)), c = 0, k = 1, i); while(c < len, i = invphiNum(k); if(i > 0 && i <= p && v[i] == 0, c++; v[i] = k); k++); select(x -> x > 0, v);} \\ Amiram Eldar, Nov 11 2024, using Max Alekseyev's invphi.gp

Formula

a(n) = Min{x; Card(InvPhi(x)) = prime(n), n-th prime}

Extensions

4 more terms from Emeric Deutsch, Jul 25 2005
More terms from Max Alekseyev, Apr 24 2010

A058341 Primes p such that phi(x) = p - 1 has more than 2 solutions.

Original entry on oeis.org

3, 5, 7, 13, 17, 19, 37, 41, 43, 61, 73, 89, 97, 101, 109, 113, 157, 163, 181, 193, 233, 241, 257, 277, 281, 313, 337, 349, 353, 397, 401, 409, 421, 433, 449, 457, 461, 487, 521, 541, 577, 593, 601, 613, 617, 641, 661, 673, 701, 733, 757, 761, 769, 821, 829
Offset: 1

Views

Author

Labos Elemer, Dec 14 2000

Keywords

Comments

There are always at least 2 such values: p and 2p. - Franklin T. Adams-Watters, May 17 2010

Examples

			3 is a term since phi(x) = 3 - 1 = 2 has more than 2 solutions: 3, 4 and 6.
5 is a term since phi(x) = 5 - 1 = 4 has more than 2 solutions: 5, 8, 10 and 12.
		

Crossrefs

Programs

A143422 Number of even numbers k such that phi(k) = n, where n runs through the values (A002202) taken by phi.

Original entry on oeis.org

1, 2, 3, 2, 4, 1, 4, 5, 2, 3, 1, 7, 1, 1, 6, 5, 6, 2, 2, 1, 9, 1, 1, 2, 1, 5, 7, 1, 1, 11, 1, 8, 1, 4, 4, 2, 13, 2, 1, 2, 1, 5, 1, 4, 2, 11, 1, 8, 1, 4, 1, 1, 2, 16, 1, 1, 4, 10, 2, 2, 1, 8, 1, 6, 1, 5, 3, 1, 17, 1, 1, 5, 2, 3, 1, 2, 12, 3, 1, 6, 1, 1, 4, 1, 21, 1, 5, 9, 2, 1, 7, 1, 1, 3, 5, 5, 1
Offset: 1

Views

Author

T. D. Noe, Aug 14 2008

Keywords

Comments

All terms are positive.

Crossrefs

Cf. A207335.

Formula

A058277(n) = A143421(n) + a(n).

A143421 Number of odd numbers k such that phi(k) = n, where n runs through the values (A002202) taken by phi.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 3, 1, 1, 1, 3, 3, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 2, 1, 2, 2, 1, 4, 2, 1, 1, 1, 4, 1, 2, 1, 6, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 2, 2, 1, 1, 4, 1, 2, 1, 5, 1, 1, 4, 1, 1, 3, 1, 1, 1, 1, 7, 2, 1, 2, 1, 1, 2, 1, 10, 1, 4, 1, 1, 1, 3, 1, 1, 2, 4, 3, 1, 6, 1, 1, 1, 2, 1, 1, 6
Offset: 1

Views

Author

T. D. Noe, Aug 14 2008

Keywords

Comments

The first zero term is for n = 16842752 = 257*2^16. If there are only five Fermat primes, then terms will be zero for n=2^r for all r>31. This is discussed in problem E3361.
a(2698482) = 0. That is, the 2698482nd term of A002202 is 16842752. - T. D. Noe, Aug 19 2008

References

  • R. K. Guy, Unsolved problems in number theory, B39.

Formula

A058277(n) = A143421(n) + A143422(n).

A305656 Integers m that satisfy tau(m) + omega(m) = #({phi(x) = m}).

Original entry on oeis.org

2, 4, 8, 16, 24, 32, 64, 128, 256, 320, 512, 1024, 2048, 3712, 4096, 7168, 8192, 10512, 16192, 16384, 32768, 33024, 37888, 41728, 49280, 51552, 54528, 57280, 62592, 65536, 66432, 67968, 68832, 69792, 81600, 84352, 87696, 91968, 92016, 93888, 94720, 124128, 129888, 131072
Offset: 1

Views

Author

Torlach Rush, Jun 07 2018

Keywords

Comments

All even terms of A000079 are contained in this sequence.
a(5) = 24 is the first term not a term of A000079, a(10) = 320 is the second.

Examples

			2 is a term because tau(2) = 2, omega(2) = 1, and #({phi(x) = 2}) = 3.
24 is a term because tau(24) = 8, omega(24) = 2, and #({phi(x) = 24}) = 10.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) uses numtheory; tau(n)+nops(factorset(n)) = nops(invphi(n)) end proc:
    select(filter, [seq(i,i=2..10^5,2)]); # Robert Israel, Oct 28 2021
  • Mathematica
    Block[{nn = 10^5, s}, s = Function[s, Function[t, Take[#, nn] &@ ReplacePart[t, Map[# -> Length@ Lookup[s, #] &, Keys@ s]]]@ ConstantArray[0, Max@ Keys@ s]]@ KeySort@ PositionIndex@ Array[EulerPhi, Floor[nn^(3/2)] + 10]; Select[Range@ nn, DivisorSigma[0, #] + PrimeNu[#] == s[[#]] &] ] (* Michael De Vlieger, Jul 21 2018 *)
  • PARI
    isok(m) = numdiv(m) + omega(m) == #invphi(m); \\ Michel Marcus, Jun 08 2018

Formula

tau(m) + omega(m) = #({phi(x) = m}).
Integers m such that A163523(m) = A014197(m).

Extensions

More terms from Michel Marcus, Jun 08 2018

A306882 Even numbers k such that phi(m) = k^2 has no solution.

Original entry on oeis.org

22, 34, 38, 46, 58, 62, 76, 78, 82, 86, 92, 98, 102, 106, 118, 122, 138, 142, 152, 154, 158, 164, 166, 172, 178, 182, 190, 194, 202, 212, 214, 218, 226, 238, 244, 254, 258, 262, 266, 274, 278, 282, 298, 302, 304, 310, 316, 318, 322, 328, 332, 334, 338, 344, 346, 356, 358, 362
Offset: 1

Views

Author

Bernard Schott, Mar 15 2019

Keywords

Comments

In the link, P. Pollack and C. Pomerance "show that almost all squares are missing from the range of Euler's phi-function".
Except for m=1 and m=2, phi(m) is always even, so, the odd numbers >= 3 are not included in the data for clarity.
Includes 2*p if p is a prime not in A052291. - Robert Israel, Apr 10 2019

Examples

			phi(489) = 18^2, phi(401) = 20^2, phi(577) = 24^2, phi(677) = 26^2, but there is no integer m such that phi(m) = 22^2 = 484.
		

Crossrefs

Programs

  • Maple
    select(t -> numtheory:-invphi(t^2)=[], [seq(i,i=2..400,2)]);  # Robert Israel, Apr 10 2019
  • PARI
    isok(n) = !(n%2) && !istotient(n^2); \\ Michel Marcus, Mar 15 2019
Previous Showing 11-20 of 22 results. Next