A058873
Number of 3-colored labeled graphs with n nodes.
Original entry on oeis.org
0, 0, 8, 192, 5120, 192000, 10938368, 976453632, 138258022400, 31176435302400, 11206367427166208, 6420240819994755072, 5860188449655027138560, 8518797083350691185950720, 19715227484913090464294371328, 72618853907514273117149186752512
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
-
E:= Sum(x^n/(n!*2^(n*(n-1)/2)),n=1..infinity):
G:= 1/6*E^3:
S:= series(G,x,21):
seq(coeff(S,x,n)*n!*2^(n*(n-1)/2),n=1..20); # Robert Israel, Aug 01 2018
-
f[list_] := (Apply[Multinomial, list] * 2^((Total[list]^2-Total[Table[list[[i]]^2, {i, 1, Length[list]}]])/2))/3!; Table[Total[Map[f, Select[Compositions[n, 3], Count[#, 0]==0&]]], {n, 1, 20}] (* Geoffrey Critzer, Oct 24 2011 *)
-
N=66; x='x+O('x^N);
E=sum(n=0, N, x^n/(n!*2^binomial(n,2)) );
tgf=(E-1)^3/6; v=concat([0,0], Vec(tgf));
v=vector(#v, n, v[n] * n! * 2^(n*(n-1)/2) )
/* Joerg Arndt, Apr 14 2013 */
A058874
Number of 4-colored labeled graphs with n nodes.
Original entry on oeis.org
0, 0, 0, 64, 5120, 450560, 56197120, 10877927424, 3407830056960, 1765179884830720, 1528596578057584640, 2225354662890778394624, 5460264388115266042593280, 22602991882128566753395998720, 157891665026904821204431467970560
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
-
m = 16;
CoefficientList[Sum[x^j*j!*2^Binomial[j, 2], {j, 1, m}] + O[x]^n, x]* CoefficientList[(Sum[x^j/(j!*2^Binomial[j, 2]), {j, 1, n}] + O[x]^m)^4/24 + O[x]^m, x] // Rest (* Jean-François Alcover, Sep 06 2019, from PARI *)
-
seq(n)={Vec(serconvol(sum(j=1, n, x^j*j!*2^binomial(j,2)) + O(x*x^n), (sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^4)/24, -n)} \\ Andrew Howroyd, Nov 30 2018
A219765
Triangle of coefficients of a polynomial sequence related to the coloring of labeled graphs.
Original entry on oeis.org
1, 0, 1, 0, -1, 2, 0, 5, -12, 8, 0, -79, 208, -192, 64, 0, 3377, -9520, 10240, -5120, 1024, 0, -362431, 1079744, -1282560, 778240, -245760, 32768, 0, 93473345, -291615296, 372893696, -255754240, 100925440, -22020096, 2097152, 0, -56272471039, 182582658048, -247557029888, 185511968768, -84263567360, 23488102400, -3758096384, 268435456
Offset: 0
Triangle begins:
n\k.|..0.....1......2.......3......4.......5
= = = = = = = = = = = = = = = = = = = = = = =
.0..|..1
.1..|..0.....1
.2..|..0....-1......2
.3..|..0.....5....-12.......8
.4..|..0...-79....208....-192.....64
.5..|..0..3377..-9520...10240..-5120....1024
...
Row 3 = [5, -12, 8]: There are 4 unlabeled graphs on 3 vertices, namely
(a) o o o (b) o o----o (c) o----o----o
(d) 0
/ \
0---0
with chromatic polynomials x^3, x^2*(x-1), x*(x-1)^2 and (x-1)^3 - (x-1), respectively. Allowing for labeling, there is 1 labeled graph of type (a), 3 labeled graphs of type (b), 3 labeled graphs of type (c) and 1 labeled graph of type (d). Thus the sum of the chromatic polynomials over all labeled graphs on 3 nodes is x^3 + 3*x^2*(x-1) + 3*x*(x-1)^2 + (x-1)^3 - (x-1) = 5*x - 12*x^2 + 8*x^3.
Row 3 of A058843 is [1,12,8]. Thus R(3,x) = x + 12*x*(x-1) + 8*x*(x-1)*(x-2) = 5*x - 12*x^2 + 8*x^3.
- Alois P. Heinz, Rows n = 0..77, flattened
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. P. Stanley, Exponential structures
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. 5 (1973), 171-178.
- Wikipedia, Graph coloring
-
R:= proc(n) option remember; `if`(n=0, 1, expand(x*add(
binomial(n-1, k)*2^(k*(n-k))*subs(x=x-1, R(k)), k=0..n-1)))
end:
T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(R(n)):
seq(T(n), n=0..10); # Alois P. Heinz, May 16 2024
-
r[0] = 1; r[1] = x; r[n_] := r[n] = x*Sum[ Binomial[n-1, k]*2^(k*(n-k))*(r[k] /. x -> x-1), {k, 0, n-1}]; row[n_] := CoefficientList[ r[n], x]; Table[ row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Apr 17 2013 *)
A371633
Number of ways to choose a simple labeled graph on [n], then partition the vertex set into independent sets, then choose a vertex from each independent set.
Original entry on oeis.org
1, 1, 4, 35, 740, 34629, 3581894, 802937479, 386655984648, 396751196145673, 862046936883049482, 3946154005780155709451, 37896676657907955726032908, 760791471852690599411320471565, 31830237745009483676211065390546958, 2768049771339996987073597682850993569807
Offset: 0
-
nn = 14; B[n_] := n! 2^Binomial[n, 2];ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /.Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[Series[Exp[ggf[x Exp[x]]], {x, 0, nn}], x]
Comments