cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A344215 a(n) = n*(3^(n-1) - 2^(n-1)).

Original entry on oeis.org

0, 0, 2, 15, 76, 325, 1266, 4655, 16472, 56745, 191710, 638275, 2101188, 6855485, 22205834, 71498775, 229058224, 730680145, 2322163638, 7356008555, 23234743580, 73200452325, 230081633122, 721667902015, 2259234965256, 7060318981625, 22028631430286, 68628565425555, 213512971483252
Offset: 0

Views

Author

Enrique Navarrete, May 11 2021

Keywords

Comments

a(n) is the number of quaternary strings of length n that contain one 0 and at least one 1.
For ternary strings with this property see A058877; for binary strings see A199969.

Examples

			a(3)=15 since the strings are the 3 permutations of 011, the 6 permutations of 012 and the 6 permutations of 013.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10, -37, 60, -36}, {0, 0, 2, 15}, 29] (* Amiram Eldar, May 11 2021 *)
    Table[n(3^(n-1)-2^(n-1)),{n,0,30}] (* Harvey P. Dale, Mar 13 2022 *)

Formula

E.g.f.: x*(exp(3*x) - exp(2*x)).
G.f.: x^2*(2 - 5*x)/(1 - 5*x + 6*x^2)^2. - Stefano Spezia, May 12 2021

A348864 a(n) is the number of multiplications required to compute the permanent of general n X n matrices using trellis method with normalization.

Original entry on oeis.org

0, 4, 12, 32, 70, 162, 350, 800, 1746, 3950, 8602, 19164, 41392, 90846, 194490, 421568, 895594, 1922022, 4057298, 8638580, 18140640, 38378054, 80244562, 168877272, 351827100, 737208082, 1531123830, 3196464740, 6621247636, 13779365430, 28477354354, 59102191488, 121898268954
Offset: 1

Views

Author

Stefano Spezia, Nov 02 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n 2^(n-1)-Ceiling[n/2]Binomial[n,Floor[n/2]]+n^2-n; Array[a,33]
  • PARI
    a(n) = n*2^(n-1) - ceil(n/2)*binomial(n, floor(n/2)) + n^2 - n; \\ Michel Marcus, Nov 03 2021

Formula

a(n) = n*2^(n-1) - ceiling(n/2)*binomial(n, floor(n/2)) + n^2 - n (see Theorem 6, p. 11 in Kiah et al.).
a(n) = A001787(n) - A100071(n) + A002378(n-1).
O.g.f.: x*(1/(1 - 2*x)^2 + 2*x/(1 - x)^3 - 1/((1 - 2*x)*sqrt(1 - 4*x^2))).
E.g.f.: exp(x)*x*(exp(x) + x) - (1 + x)*BesselI(1, 2*x) - x*BesselI(2, 2*x).
D-finite with recurrence (n-1)*(n-2)*(n-4)*(3*n-23)*a(n) -3*(n -2)*(3*n^3-34*n^2+91*n-20)*a(n-1) -2*(n-1)*(n-3)*(3*n^2 -47*n+164)*a(n-2) +12*(3*n-22)*(n-1)*(n-2)*(n-4)*a(n-3) -8*(3*n-20)*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Mar 06 2022
Previous Showing 21-22 of 22 results.