cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A059081 Number of 5-element T_0-antichains on a labeled n-set, n=0,..,32.

Original entry on oeis.org

0, 0, 0, 0, 6, 2086, 273072, 19371912, 940055760, 35289051840, 1099827892800, 29723466326400, 716351882400000, 15683016533184000, 315722887044364800, 5890186860509952000, 102288867798813696000, 1656523525703574528000
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jan 06 2001

Keywords

Comments

An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point.

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Programs

  • Mathematica
    P[x_, n_] := (-1)^n*Pochhammer[-x, n]; Table[(1/5!)*(P[32, n] - 20*P[24, n] + 60*P[20, n] + 20*P[18, n] + 10*P[17, n] - 110*P[16, n] - 120*P[15, n] + 150*P[14, n] + 120*P[13, n] - 240*P[12, n] + 20*P[11, n] + 240*P[10, n] + 40*P[9, n] - 205*P[8, n] + 60*P[7, n] - 210*P[6, n] + 210*P[5, n] + 50*P[4, n] - 100*P[3, n] + 24*P[2, n]), {n, 0, 32}] (* G. C. Greubel, Oct 07 2017 *)

Formula

a(n) = (1/5!)*([32]_n - 20*[24]_n + 60*[20]_n + 20*[18]_n + 10*[17]_n - 110*[16]_n - 120*[15]_n + 150*[14]_n + 120*[13]_n - 240*[12]_n + 20*[11]_n + 240*[10]_n + 40*[9]_n - 205*[8]_n + 60*[7]_n - 210*[6]_n + 210*[5]_n + 50*[4]_n - 100*[3]_n + 24*[2]_n), where [k]_n := k*(k - 1)*...*(k - n + 1), [k]_0 = 1.

A059082 Number of 6-element T_0-antichains on a labeled n-set, n = 0, ..., 64.

Original entry on oeis.org

0, 0, 0, 0, 1, 1370, 738842, 176796382, 26021566536, 2807549333568, 245222809302240, 18418417704308160, 1236761946163054080, 76210520306627266560, 4388527139331858082560, 239214759548062858560000, 12457699161320493400320000, 623967599346727576292352000
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jan 06 2001

Keywords

Comments

An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point.

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Programs

  • Maple
    f:=proc(k,n) if k+1<=n then RETURN(0) else RETURN(k!/(k - n)!) fi: end;a:=n->(1/6!)*(f(64,n) - 30*f(48,n) + 120*f(40,n) + 60*f(36,n) + 60*f(34,n)- 12*f(33,n) - 345*f(32,n) - 720*f(30,n) + 810*f(28,n) + 120*f(27,n) + 480*f(26,n) + 360*f(25,n) - 480*f(24,n) - 720*f(23,n) - 240*f(22,n) - 540*f(21,n) + 1380*f(20,n) + 750*f(19,n) + 60*f(18,n) - 210*f(17,n) - 1535*f(16,n) - 1820*f(15,n) + 2250*f(14,n) + 1800*f(13,n) - 2820*f(12,n) + 300*f(11,n) + 2040*f(10,n) + 340*f(9,n) - 1815*f(8,n) + 510*f(7,n) - 1350*f(6,n) + 1350*f(5,n) + 274*f(4,n) - 548*f(3,n) + 120*f(2,n));seq(a(n),n=0..20); # Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005

Formula

a(n) = (1/6!)*([64]_n - 30*[48]_n + 120*[40]_n + 60*[36]_n + 60*[34]_n - 12*[33]_n - 345*[32]_n - 720*[30]_n + 810*[28]_n + 120*[27]_n + 480*[26]_n + 360*[25]_n - 480*[24]_n - 720*[23]_n - 240*[22]_n - 540*[21]_n + 1380*[20]_n + 750*[19]_n + 60*[18]_n - 210*[17]_n - 1535*[16]_n - 1820*[15]_n + 2250*[14]_n + 1800*[13]_n - 2820*[12]_n + 300*[11]_n + 2040*[10]_n + 340*[9]_n - 1815*[8]_n + 510*[7]_n - 1350*[6]_n + 1350*[5]_n + 274*[4]_n - 548*[3]_n + 120*[2]_n), where [k]_n := k*(k - 1)*...*(k - n + 1), [k]_0 = 1.

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
Previous Showing 21-22 of 22 results.