cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A069758 Frobenius number of the numerical semigroup generated by three consecutive hexagonal numbers.

Original entry on oeis.org

65, 377, 395, 797, 1589, 6029, 3347, 4571, 6035, 10997, 10979, 12212, 19409, 47246, 24023, 29003, 35357, 52112, 50603, 50411, 73049, 158207, 78155, 90203, 102005, 144443, 138467, 131474, 183077
Offset: 2

Views

Author

Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 08 2002

Keywords

Comments

The Frobenius number of a numerical semigroup generated by relatively prime integers a_1,...,a_n is the largest positive integer that is not a nonnegative linear combination of a_1,...,a_n. Since three consecutive hexagonal numbers are relatively prime, they generate a numerical semigroup with a Frobenius number.

Examples

			a(2)=65 because 65 is not a nonnegative linear combination of 6, 15 and 28, but all integers greater than 65 are.
		

Crossrefs

Programs

  • Mathematica
    FrobeniusNumber/@Partition[Table[n(2n-1),{n,2,35}],3,1] (* Harvey P. Dale, Jul 25 2011 *)

A069760 Frobenius number of the numerical semigroup generated by consecutive centered square numbers.

Original entry on oeis.org

47, 287, 959, 2399, 5039, 9407, 16127, 25919, 39599, 58079, 82367, 113567, 152879, 201599, 261119, 332927, 418607, 519839, 638399, 776159, 935087, 1117247, 1324799, 1559999, 1825199, 2122847
Offset: 1

Views

Author

Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 09 2002

Keywords

Comments

The Frobenius number of a numerical semigroup generated by relatively prime integers a_1,...,a_n is the largest positive integer that is not a nonnegative linear combination of a_1,...,a_n. Since consecutive centered squares are relatively prime, they generate a numerical semigroup with a Frobenius number. The Frobenius number of a 2-generator semigroup is ab-a-b.

Examples

			a(1)=47 because 47 is not a nonnegative linear combination of 5 and 13, but all integers greater than 47 are.
		

Crossrefs

Programs

  • Mathematica
    Table[4n^4+16n^3+20n^2+8n-1,{n,30}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{47,287,959,2399,5039},30] (* Harvey P. Dale, Apr 25 2011 *)

Formula

a(n) = 4*n^4+16*n^3+20*n^2+8*n-1.
a(n) = 5*a(n-1)-10*a(n-2) +10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Apr 25 2011
G.f.: x*(47+52*x-6*x^2+4*x^3-x^4)/(1-x)^5. - Colin Barker, Feb 14 2012

A305415 Numbers k such that F(k)*F(k+1) - F(k+2) is prime, where F = A000045.

Original entry on oeis.org

4, 6, 7, 8, 10, 11, 14, 25, 34, 40, 44, 54, 62, 63, 66, 108, 190, 266, 299, 306, 310, 343, 350, 638, 726, 984, 1626, 2223, 2591, 2843, 3291, 3694, 4198, 4473, 4494, 5128, 7934, 10595, 12515, 17433, 17883, 19979, 23887, 28847, 30071, 64168, 79073, 81971
Offset: 1

Views

Author

Vincenzo Librandi, Jun 09 2018

Keywords

Comments

Primes in A059769: 7, 83, 239, 659, 4751, 12583, 228983, 9107313407, 52623175261103, 16944503546101559, 796030992711071707, 12041560801669230246323, etc.

Crossrefs

Programs

  • Magma
    [n: n in [1..800] | IsPrime(Fibonacci(n)*Fibonacci(n+1)-Fibonacci(n+2))];
    
  • Maple
    with(combinat,fibonacci): select(n->isprime(fibonacci(n)*fibonacci(n+1)-fibonacci(n+2)),[$1..8000]); # Muniru A Asiru, Jun 12 2018
  • Mathematica
    Select[Range[3000], PrimeQ[(Fibonacci[#] Fibonacci[# + 1] - Fibonacci[# + 2])]&]
  • PARI
    isok(k) = isprime(fibonacci(k)*fibonacci(k+1) - fibonacci(k+2)); \\ Michel Marcus, Jun 13 2018

Extensions

a(38)-a(46) from Giovanni Resta, Jun 15 2018
a(47)-a(48) from Robert Price, Jun 18 2018
Previous Showing 11-13 of 13 results.