cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A059910 a(n) = |{m : multiplicative order of n mod m = 5}|.

Original entry on oeis.org

0, 1, 4, 6, 9, 4, 4, 6, 20, 9, 8, 2, 6, 6, 12, 44, 5, 6, 18, 14, 12, 4, 4, 2, 56, 13, 20, 4, 6, 2, 40, 6, 18, 12, 12, 44, 63, 6, 28, 4, 16, 14, 8, 2, 18, 12, 28, 14, 70, 3, 42, 12, 42, 6, 24, 8, 56, 44, 60, 6, 60, 2, 4, 90, 21, 20, 24, 2, 18, 60, 88, 6, 12, 2, 28, 26, 6, 28, 8, 14, 170
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m) = 1, is the smallest natural number d for which a^d = 1 (mod m).

Crossrefs

Programs

  • Mathematica
    a[n_] := Subtract @@ DivisorSigma[0, {n^5-1, n-1}]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jan 25 2025 *)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^5-1) - numdiv(n-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^5-1)-tau(n-1), where tau(n) = number of divisors of n A000005. Generally, if b(n, r) = |{m : multiplicative order of n mod m = r}| then b(n, r) = Sum_{d|r} mu(d)*tau(n^(r/d)-1), where mu(n) = Moebius function A008683.

A226477 Table (read by rows) of the natural numbers (in ascending order) whose reciprocals have only periodic decimals of length k.

Original entry on oeis.org

1, 3, 9, 11, 33, 99, 27, 37, 111, 333, 999, 101, 303, 909, 1111, 3333, 9999, 41, 123, 271, 369, 813, 2439, 11111, 33333, 99999, 7, 13, 21, 39, 63, 77, 91, 117, 143, 189, 231, 259, 273, 297, 351, 407, 429, 481, 693, 777, 819, 1001, 1221, 1287, 1443, 2079, 2331, 2457, 2849, 3003, 3367, 3663, 3861, 4329, 5291, 6993, 8547, 9009, 10101, 10989, 12987, 15873, 25641, 27027, 30303, 37037, 47619, 76923, 90909, 111111, 142857, 333333, 999999
Offset: 1

Views

Author

Martin Renner, Jun 08 2013

Keywords

Comments

The k-th row always ends with 10^k - 1 = 99..99 (k times 9).
The number of elements in row k is A059892(k).

Examples

			The table T(k,m), m = 1..A059892(k), begins
  1, 3, 9;
  11, 33, 99;
  27, 37, 111, 333, 999;
  etc.
		

Crossrefs

Programs

  • Maple
    a:=[1,3,9]: S:={1,3,9}: for k from 2 to 6 do T:=numtheory[divisors](10^k-1): a:=[op(a),op(T minus S)]: S:=S union T; od: a;
  • PARI
    Row(n) = my(v=divisors(10^n-1)); select(x->(znorder(Mod(10,x))==n), v) \\ Jianing Song, Jun 15 2021

A345319 Numbers whose reciprocals have period 10.

Original entry on oeis.org

451, 1353, 2981, 4059, 8943, 9091, 26829, 27273, 81819, 100001, 122221, 300003, 366663, 372731, 900009, 1099989, 1118193, 2463661, 3354579, 4100041, 7390983, 12300123, 22172949, 27100271, 36900369, 81300813, 101010101, 243902439, 303030303, 909090909, 1111111111, 3333333333, 9999999999
Offset: 1

Views

Author

Tanya Khovanova, Jun 13 2021

Keywords

Comments

Equivalently, these are numbers k such that the multiplicative order of 10 modulo k is 10.
These are indices of terms at which 10 appears in A084680.
There are exactly A059892(10) = mu(10/10)*d(10^10-1) + mu(10/5)*d(10^5-1) + mu(10/2)*d(10^2-1) + mu(10/1)*d(10^1-1) = 48 - 12 - 6 + 3 = 33 terms, where d = A000005 and mu = A008683. - Jianing Song, Jun 15 2021

Examples

			1/451 = 0.00221729490022172949002217294900..., whose periodic part is 0022172949.
		

Crossrefs

Subsequence of A027895.
10th row of A226477.

Programs

  • Mathematica
    Select[Range[100000000], MultiplicativeOrder[10, #] == 10 &]
  • PARI
    isok(k) = gcd(k, 10) && (znorder(Mod(10, k)) == 10); \\ Michel Marcus, Jun 14 2021
    
  • PARI
    my(v=divisors(10^10-1)); select(x->(znorder(Mod(10,x))==10), v) \\ Jianing Song, Jun 15 2021

Extensions

a(27)-a(28) from Jinyuan Wang, Jun 13 2021
a(29)-a(33) from Jianing Song, Jun 15 2021
Previous Showing 21-23 of 23 results.