Original entry on oeis.org
1, 2, 9, 12, 18, 24, 80, 108, 160, 216, 625, 720, 960, 1250, 1440, 1792, 1920, 2025, 3584, 4050, 5625, 7500, 8640, 11250, 15000, 16128, 17280, 18225, 21504, 24300, 32256, 36450, 43008, 48600, 50000, 67500, 100000, 135000, 143360, 162000, 193536, 218700, 286720, 321489, 324000, 387072, 437400, 450000, 600000
Offset: 1
The Fermi-Dirac factorization of 160 is 2 * 5 * 16. The factors 2, 5 and 16 are A329050(0,0), A329050(2,0) and A329050(0,2), having symmetry about the main diagonal of A329050. So 160 is in the sequence.
-
A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
ff(fa) = {for (i=1, #fa~, my(p=fa[i, 1]); fa[i, 1] = A019565(fa[i, 2]); fa[i, 2] = 2^(primepi(p)-1); ); fa; } \\ A225546
pos(k, fs) = for (i=1, #fs, if (fs[i] == k, return(i)););
normalize(f) = {my(list = List()); for (k=1, #f~, my(fk = factor(f[k,1])); for (j=1, #fk~, listput(list, fk[j,1]));); my(fs = Set(list)); my(m = matrix(#fs, 2)); for (i=1, #m~, m[i,1] = fs[i]; for (k=1, #f~, m[i,2] += valuation(f[k,1], fs[i])*f[k,2];);); m;}
isok(n) = my(fa=factor(n), fb=ff(fa)); normalize(fb) == fa; \\ Michel Marcus, Aug 05 2022
A225174
Square array read by antidiagonals: T(m,n) = greatest common unitary divisor of m and n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 5, 1, 3, 1, 1
Offset: 1
Array begins
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, ...
1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, ...
1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, ...
1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, ...
1, 2, 3, 1, 1, 6, 1, 1, 1, 2, 1, 3, ...
1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, ...
...
The unitary divisors of 3 are 1 and 3, those of 6 are 1,2,3,6; so T(6,3) = T(3,6) = 3.
- M. Lal, H. Wareham and R. Mifflin, Iterates of the bi-unitary totient function, Utilitas Math., 10 (1976), 347-350.
-
# returns the greatest common unitary divisor of m and n
f:=proc(m,n)
local i,ans;
ans:=1;
for i from 1 to min(m,n) do
if ((m mod i) = 0) and (igcd(i,m/i) = 1) then
if ((n mod i) = 0) and (igcd(i,n/i) = 1) then ans:=i; fi;
fi;
od;
ans; end;
-
f[m_, n_] := Module[{i, ans=1}, For[i=1, i<=Min[m, n], i++, If[Mod[m, i]==0 && GCD[i, m/i]==1, If[Mod[n, i]==0 && GCD[i, n/i]==1, ans=i]]]; ans];
Table[f[m-n+1, n], {m, 1, 14}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jun 19 2018, translated from Maple *)
-
up_to = 20100; \\ = binomial(200+1,2)
A225174sq(m,n) = { my(a=min(m,n),b=max(m,n),md=0); fordiv(a,d,if(0==(b%d)&&1==gcd(d,a/d)&&1==gcd(d,b/d),md=d)); (md); };
A225174list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, if(i++ > up_to, return(v)); v[i] = A225174sq((a-(col-1)),col))); (v); };
v225174 = A225174list(up_to);
A225174(n) = v225174[n]; \\ Antti Karttunen, Nov 28 2018
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 4, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 8, 4, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 4, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 8, 2, 5, 0, 0, 0, 1, 0
Offset: 1
-
Map[-1 + Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # != 2^IntegerExponent[#, 2] &] &, Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 105] ] (* Michael De Vlieger, May 26 2020 *)
-
A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
A334109(n) = { my(f=factor(n),pis=apply(primepi,f[,1]),es=f[,2]); sum(k=1,#f~,(2^(pis[k]-1))*A329697(A019565(es[k]))); };
A366244
The largest infinitary divisor of n that is a term of A366242.
Original entry on oeis.org
1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 16, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7, 29, 30, 31, 32, 33, 34, 35, 1, 37, 38, 39, 10, 41, 42, 43, 11, 5, 46, 47, 48, 1, 2, 51, 13, 53, 6, 55, 14, 57, 58, 59, 15, 61, 62, 7, 16, 65, 66, 67, 17, 69, 70, 71
Offset: 1
-
f[p_, e_] := p^BitAnd[e, Sum[2^k, {k, 0, Floor@ Log2[e], 2}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
s(e) = sum(k = 0, e, (-2)^k*floor(e/2^k));
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^s(f[i,2]));}
A366245
The largest infinitary divisor of n that is a term of A366243.
Original entry on oeis.org
1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 25, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1
Offset: 1
-
f[p_, e_] := p^BitAnd[e, Sum[2^k, {k, 1, Floor@ Log2[e], 2}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
s(e) = -sum(k = 1, e, (-2)^k*floor(e/2^k));
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^s(f[i,2]));}
A214682
Remove 2's that do not contribute to a factor of 4 from the prime factorization of n.
Original entry on oeis.org
1, 1, 3, 4, 5, 3, 7, 4, 9, 5, 11, 12, 13, 7, 15, 16, 17, 9, 19, 20, 21, 11, 23, 12, 25, 13, 27, 28, 29, 15, 31, 16, 33, 17, 35, 36, 37, 19, 39, 20, 41, 21, 43, 44, 45, 23, 47, 48, 49, 25, 51, 52, 53, 27, 55, 28, 57, 29
Offset: 1
For n=8, v_4(8)=1, v_2(8)=3, so a(8)=(8*4^1)/(2^3)=4.
For n=12, v_4(12)=1, v_2(12)=2, so a(12)=(12*4^1)/(2^2)=12.
A059897 is used to express relationship between terms of this sequence.
-
a[n_] := n/(2^Mod[IntegerExponent[n, 2], 2]); Array[a, 100] (* Amiram Eldar, Dec 09 2020 *)
-
a(n)=n>>(valuation(n,2)%2) \\ Charles R Greathouse IV, Jul 26 2012
-
def A214682(n): return n>>1 if (~n&n-1).bit_length()&1 else n # Chai Wah Wu, Jan 09 2023
-
C = []
for i in [1..n]:
C.append(i*4^(Integer(i).valuation(4))/2^(Integer(i).valuation(2)))
A305720
Square array T(n, k) read by antidiagonals, n > 0 and k > 0; for any prime number p, the p-adic valuation of T(n, k) is the product of the p-adic valuations of n and of k.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 16, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 8, 1, 4, 5, 4, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 9, 64, 1, 6, 1, 64, 9, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 4, 1, 8, 7, 8
Offset: 1
Array T(n, k) begins:
n\k| 1 2 3 4 5 6 7 8 9 10
---+--------------------------------------------------
1| 1 1 1 1 1 1 1 1 1 1
2| 1 2 1 4 1 2 1 8 1 2 -> A006519
3| 1 1 3 1 1 3 1 1 9 1 -> A038500
4| 1 4 1 16 1 4 1 64 1 4
5| 1 1 1 1 5 1 1 1 1 5 -> A060904
6| 1 2 3 4 1 6 1 8 9 2 -> A065331
7| 1 1 1 1 1 1 7 1 1 1 -> A268354
8| 1 8 1 64 1 8 1 512 1 8
9| 1 1 9 1 1 9 1 1 81 1
10| 1 2 1 4 5 2 1 8 1 10 -> A132741
Cf.
A003989,
A003990,
A003991,
A006519,
A007947,
A038500,
A054496,
A059895,
A059896,
A059897,
A060904,
A065331,
A089913,
A132741,
A268354,
A268357.
-
T[n_, k_] := With[{p = FactorInteger[GCD[n, k]][[All, 1]]}, If[p == {1}, 1, Times @@ (p^(IntegerExponent[n, p] * IntegerExponent[k, p]))]];
Table[T[n-k+1, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 11 2018 *)
-
T(n, k) = my (p=factor(gcd(n, k))[,1]); prod(i=1, #p, p[i]^(valuation(n, p[i]) * valuation(k, p[i])))
A306446
a(n) is the number of connected components in the Fermi-Dirac factorization of n (see Comments for precise definition).
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 2
Offset: 1
For n = 67!:
- the Fermi-Dirac primes p^(2^k) in F(67!) can be depicted as:
6|@
5|
4| @
3| @@@
2| @@ @@
1| @@@@ @@@@@
0| @@ @@@ @@@@@@@@
---+-------------------
k/p| 111122334445566
|2357137939171373917
- G(67!) has 4 connected components:
6|A
5|
4| B
3| BBB
2| BB BB
1| BBBB CCCCC
0| BB CCC DDDDDDDD
---+-------------------
k/p| 111122334445566
|2357137939171373917
- hence a(67!) = 4.
A329050 corresponds to the array depicted in the first example, with prime(n+1) = p.
The formula section details how the sequence maps the terms of
A002110,
A066205.
Comments