cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A225547 Fixed points of A225546.

Original entry on oeis.org

1, 2, 9, 12, 18, 24, 80, 108, 160, 216, 625, 720, 960, 1250, 1440, 1792, 1920, 2025, 3584, 4050, 5625, 7500, 8640, 11250, 15000, 16128, 17280, 18225, 21504, 24300, 32256, 36450, 43008, 48600, 50000, 67500, 100000, 135000, 143360, 162000, 193536, 218700, 286720, 321489, 324000, 387072, 437400, 450000, 600000
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

Every number in this sequence is the product of a unique subset of A225548.
From Peter Munn, Feb 11 2020: (Start)
The terms are the numbers whose Fermi-Dirac factors (see A050376) occur symmetrically about the main diagonal of A329050.
Closed under the commutative binary operation A059897(.,.). As numbers are self-inverse under A059897, the sequence thereby forms a subgroup of the positive integers under A059897.
(End)

Examples

			The Fermi-Dirac factorization of 160 is 2 * 5 * 16. The factors 2, 5 and 16 are A329050(0,0), A329050(2,0) and A329050(0,2), having symmetry about the main diagonal of A329050. So 160 is in the sequence.
		

Crossrefs

Subsequences: A191554, A191555, A225548.
Cf. fixed points of the comparable A122111 involution: A088902.

Programs

  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    ff(fa) = {for (i=1, #fa~, my(p=fa[i, 1]); fa[i, 1] = A019565(fa[i, 2]); fa[i, 2] = 2^(primepi(p)-1); ); fa; } \\ A225546
    pos(k, fs) = for (i=1, #fs, if (fs[i] == k, return(i)););
    normalize(f) = {my(list = List()); for (k=1, #f~, my(fk = factor(f[k,1])); for (j=1, #fk~, listput(list, fk[j,1]));); my(fs = Set(list)); my(m = matrix(#fs, 2)); for (i=1, #m~, m[i,1] = fs[i]; for (k=1, #f~, m[i,2] += valuation(f[k,1], fs[i])*f[k,2];);); m;}
    isok(n) = my(fa=factor(n), fb=ff(fa)); normalize(fb) == fa; \\ Michel Marcus, Aug 05 2022

A225174 Square array read by antidiagonals: T(m,n) = greatest common unitary divisor of m and n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 5, 1, 3, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, May 01 2013

Keywords

Examples

			Array begins
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, ...
1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, ...
1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, ...
1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, ...
1, 2, 3, 1, 1, 6, 1, 1, 1, 2, 1, 3, ...
1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, ...
...
The unitary divisors of 3 are 1 and 3, those of 6 are 1,2,3,6; so T(6,3) = T(3,6) = 3.
		

References

  • M. Lal, H. Wareham and R. Mifflin, Iterates of the bi-unitary totient function, Utilitas Math., 10 (1976), 347-350.

Crossrefs

See A034444, A077610 for unitary divisors of n.
Different from A059895.

Programs

  • Maple
    # returns the greatest common unitary divisor of m and n
    f:=proc(m,n)
    local i,ans;
    ans:=1;
    for i from 1 to min(m,n) do
    if ((m mod i) = 0) and (igcd(i,m/i) = 1)  then
       if ((n mod i) = 0) and (igcd(i,n/i) = 1)  then ans:=i; fi;
    fi;
    od;
    ans; end;
  • Mathematica
    f[m_, n_] := Module[{i, ans=1}, For[i=1, i<=Min[m, n], i++, If[Mod[m, i]==0 && GCD[i, m/i]==1, If[Mod[n, i]==0 && GCD[i, n/i]==1, ans=i]]]; ans];
    Table[f[m-n+1, n], {m, 1, 14}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jun 19 2018, translated from Maple *)
  • PARI
    up_to = 20100; \\ = binomial(200+1,2)
    A225174sq(m,n) = { my(a=min(m,n),b=max(m,n),md=0); fordiv(a,d,if(0==(b%d)&&1==gcd(d,a/d)&&1==gcd(d,b/d),md=d)); (md); };
    A225174list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, if(i++ > up_to, return(v)); v[i] = A225174sq((a-(col-1)),col))); (v); };
    v225174 = A225174list(up_to);
    A225174(n) = v225174[n]; \\ Antti Karttunen, Nov 28 2018

Formula

T(m,n) = T(n,m) = A165430(n,m).

A334109 a(n) = A329697(A225546(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 4, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 8, 4, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 4, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 8, 2, 5, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 29 2020

Keywords

Comments

Conjecture: Each k >= 0 occurs for the first time at A334110(k) = A019565(k)^2. Note that each k must occur first time on square n, because of the identity a(n) = a(A008833(n)). However, is there any reason to exclude squares with prime exponents > 2 from the candidates? See also comments in A334204.

Crossrefs

Programs

  • Mathematica
    Map[-1 + Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # != 2^IntegerExponent[#, 2] &] &, Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 105] ] (* Michael De Vlieger, May 26 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    A334109(n) = { my(f=factor(n),pis=apply(primepi,f[,1]),es=f[,2]); sum(k=1,#f~,(2^(pis[k]-1))*A329697(A019565(es[k]))); };

Formula

Additive with a(prime(i)^j) = A000079(i-1) * A329697(A019565(j)), a(m*n) = a(m)+a(n) if gcd(m,n) = 1.
Alternatively, additive with a(prime(i)^(2^k)) = 2^(i-1) * A329697(prime(k+1)), a(m*n) = a(m)+a(n) if A059895(m,n) = 1. - Peter Munn, May 04 2020
a(n) = A329697(A225546(n)) = A329697(A331736(n)).
a(n) = a(A008833(n)).
For all n >= 0, a(A334110(n)) = n, a(A334860(n)) = A334204(n).
a(A331590(m,k)) = a(m) + a(k); a(A003961(n)) = 2*a(n). - Peter Munn, Apr 30 2020

A366244 The largest infinitary divisor of n that is a term of A366242.

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 16, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7, 29, 30, 31, 32, 33, 34, 35, 1, 37, 38, 39, 10, 41, 42, 43, 11, 5, 46, 47, 48, 1, 2, 51, 13, 53, 6, 55, 14, 57, 58, 59, 15, 61, 62, 7, 16, 65, 66, 67, 17, 69, 70, 71
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Crossrefs

See the formula section for the relationships with A007913, A046100, A059895, A059896, A059897, A225546, A247503, A352780.

Programs

  • Mathematica
    f[p_, e_] := p^BitAnd[e, Sum[2^k, {k, 0, Floor@ Log2[e], 2}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = sum(k = 0, e, (-2)^k*floor(e/2^k));
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^s(f[i,2]));}

Formula

Multiplicative with a(p^e) = p^A063694(e).
a(n) = n / A366245(n).
a(n) >= 1, with equality if and only if n is a term of A366243.
a(n) <= n, with equality if and only if n is a term of A366242.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1-1/p)*(Sum_{k>=1} p^(A063694(k)-2*k)) = 0.35319488024808595542... .
From Peter Munn, Jan 09 2025: (Start)
a(n) = max({k in A366242 : A059895(k, n) = k}).
a(n) = Product_{k >= 0} A352780(n, 2k).
Also defined by:
- for n in A046100, a(n) = A007913(n);
- a(n^4) = (a(n))^4;
- a(A059896(n,k)) = A059896(a(n), a(k)).
Other identities:
a(n) = sqrt(A366245(n^2)).
a(A059897(n,k)) = A059897(a(n), a(k)).
a(A225546(n)) = A225546(A247503(n)).
(End)

A366245 The largest infinitary divisor of n that is a term of A366243.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 25, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Comments

First differs from A335324 at n = 256.

Crossrefs

See the formula section for the relationships with A008833, A046100, A059895, A059896, A059897, A225546, A248101, A352780.

Programs

  • Mathematica
    f[p_, e_] := p^BitAnd[e, Sum[2^k, {k, 1, Floor@ Log2[e], 2}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = -sum(k = 1, e, (-2)^k*floor(e/2^k));
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^s(f[i,2]));}

Formula

Multiplicative with a(p^e) = p^A063695(e).
a(n) = n / A366244(n).
a(n) >= 1, with equality if and only if n is a term of A366242.
a(n) <= n, with equality if and only if n is a term of A366243.
From Peter Munn, Jan 09 2025: (Start)
a(n) = max({k in A366243 : A059895(k, n) = k}).
a(n) = Product_{k >= 0} A352780(n, 2k+1).
Also defined by:
- for n in A046100, a(n) = A008833(n);
- a(n^4) = (a(n))^4;
- a(A059896(n,k)) = A059896(a(n), a(k)).
Other identities:
a(n) = sqrt(A366244(n^2)).
a(A059897(n,k)) = A059897(a(n), a(k)).
a(A225546(n)) = A225546(A248101(n)).
(End)

A214682 Remove 2's that do not contribute to a factor of 4 from the prime factorization of n.

Original entry on oeis.org

1, 1, 3, 4, 5, 3, 7, 4, 9, 5, 11, 12, 13, 7, 15, 16, 17, 9, 19, 20, 21, 11, 23, 12, 25, 13, 27, 28, 29, 15, 31, 16, 33, 17, 35, 36, 37, 19, 39, 20, 41, 21, 43, 44, 45, 23, 47, 48, 49, 25, 51, 52, 53, 27, 55, 28, 57, 29
Offset: 1

Views

Author

Tyler Ball, Jul 25 2012

Keywords

Comments

In this sequence, the number 4 exhibits some characteristics of a prime number since all extraneous 2's have been removed from the prime factorizations of all other numbers.

Examples

			For n=8, v_4(8)=1, v_2(8)=3, so a(8)=(8*4^1)/(2^3)=4.
For n=12, v_4(12)=1, v_2(12)=2, so a(12)=(12*4^1)/(2^2)=12.
		

Crossrefs

Range of values: A003159.
Missing values: A036554.
A056832, A059895, A073675 are used in a formula defining this sequence.
A059897 is used to express relationship between terms of this sequence.
Cf. A007814 (v_2(n)), A235127 (v_4(n)).

Programs

  • Mathematica
    a[n_] := n/(2^Mod[IntegerExponent[n, 2], 2]); Array[a, 100] (* Amiram Eldar, Dec 09 2020 *)
  • PARI
    a(n)=n>>(valuation(n,2)%2) \\ Charles R Greathouse IV, Jul 26 2012
    
  • Python
    def A214682(n): return n>>1 if (~n&n-1).bit_length()&1 else n # Chai Wah Wu, Jan 09 2023
  • SageMath
    C = []
    for i in [1..n]:
        C.append(i*4^(Integer(i).valuation(4))/2^(Integer(i).valuation(2)))
    

Formula

a(n) = (n*4^(v_4(n)))/(2^(v_2(n))) where v_k(n) is the k-adic valuation of n. That is, v_k(n) is the largest power of k, a, such that k^a divides n.
For n odd, a(n)=n since n has no factors of 2 (or 4).
From Peter Munn, Nov 29 2020: (Start)
a(A003159(n)) = n.
a(A036554(n)) = n/2.
a(n) = n/A056832(n) = n/A059895(n, 2) = min(n, A073675(n)).
a(A059897(n, k)) = A059897(a(n), a(k)). (End)
Multiplicative with a(2^e) = 2^(2*floor(e/2)), and a(p^e) = p^e for odd primes p. - Amiram Eldar, Dec 09 2020
Sum_{k=1..n} a(k) ~ (5/12) * n^2. - Amiram Eldar, Nov 10 2022
Dirichlet g.f.: zeta(s-1)*(2^s+1)/(2^s+2). - Amiram Eldar, Dec 30 2022

A305720 Square array T(n, k) read by antidiagonals, n > 0 and k > 0; for any prime number p, the p-adic valuation of T(n, k) is the product of the p-adic valuations of n and of k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 16, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 8, 1, 4, 5, 4, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 9, 64, 1, 6, 1, 64, 9, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 4, 1, 8, 7, 8
Offset: 1

Views

Author

Rémy Sigrist, Jun 09 2018

Keywords

Comments

The array T is completely multiplicative in both parameters.
For any n > 0 and prime number p, T(n, p) is the highest power of p dividing n.
For any function f associating a nonnegative value to any pair of nonnegative values and such that f(0, 0) = 0, we can build an analog of this sequence, say P_f, such that for any prime number p and any n and k > 0 with p-adic valuations i and j, the p-adic valuation of P_f(n, k) equals f(i, j):
f(i, j) P_f
------- ---
i * j T (this sequence)
i + j A003991 (product)
abs(i-j) A089913
min(i, j) A003989 (GCD)
max(i, j) A003990 (LCM)
i AND j A059895
i OR j A059896
i XOR j A059897
If log(N) denotes the set {log(n) : n is in N, the set of the positive integers}, one can define a binary operation on log(N): with prime factorizations n = Product p_i^e_i and k = Product p_i^f_i, set log(n) o log(k) = Sum_{i} (e_i*f_i) * log(p_i). o has the premises of a scalar product even if log(N) isn't a vector space. T(n, k) can be viewed as exp(log(n) o log(k)). - Luc Rousseau, Oct 11 2020

Examples

			Array T(n, k) begins:
  n\k|    1    2    3    4    5    6    7    8    9   10
  ---+--------------------------------------------------
    1|    1    1    1    1    1    1    1    1    1    1
    2|    1    2    1    4    1    2    1    8    1    2  -> A006519
    3|    1    1    3    1    1    3    1    1    9    1  -> A038500
    4|    1    4    1   16    1    4    1   64    1    4
    5|    1    1    1    1    5    1    1    1    1    5  -> A060904
    6|    1    2    3    4    1    6    1    8    9    2  -> A065331
    7|    1    1    1    1    1    1    7    1    1    1  -> A268354
    8|    1    8    1   64    1    8    1  512    1    8
    9|    1    1    9    1    1    9    1    1   81    1
   10|    1    2    1    4    5    2    1    8    1   10  -> A132741
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := With[{p = FactorInteger[GCD[n, k]][[All, 1]]}, If[p == {1}, 1, Times @@ (p^(IntegerExponent[n, p] * IntegerExponent[k, p]))]];
    Table[T[n-k+1, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 11 2018 *)
  • PARI
    T(n, k) = my (p=factor(gcd(n, k))[,1]); prod(i=1, #p, p[i]^(valuation(n, p[i]) * valuation(k, p[i])))

Formula

T(n, k) = T(k, n) (T is commutative).
T(m, T(n, k)) = T(T(m, n), k) (T is associative).
T(n, k) = 1 iff gcd(n, k) = 1.
T(n, n) = A054496(n).
T(n, A007947(n)) = n.
T(n, 1) = 1.
T(n, 2) = A006519(n).
T(n, 3) = A038500(n).
T(n, 4) = A006519(n)^2.
T(n, 5) = A060904(n).
T(n, 6) = A065331(n).
T(n, 7) = A268354(n).
T(n, 8) = A006519(n)^3.
T(n, 9) = A038500(n)^2.
T(n, 10) = A132741(n).
T(n, 11) = A268357(n).

A306446 a(n) is the number of connected components in the Fermi-Dirac factorization of n (see Comments for precise definition).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Rémy Sigrist, Feb 16 2019

Keywords

Comments

For any n > 0:
- let F(n) be the set of distinct Fermi-Dirac primes (A050376) with product n,
- let G(n) be the undirected graph with vertices F(n) and the following connection rules: for any k >= 0 and any pair of consecutive prime numbers (p, q):
- p^(2^k) and p^(2^(k+1)) are connected,
- p^(2^k) and q^(2^k) are connected,
- a(n) is the number of connected components in G(n).
The sequence may be specified algebraically by formulas (1) to (2c) in my contemporary entry in the formula section. - Peter Munn, Jan 05 2021

Examples

			For n = 67!:
- the Fermi-Dirac primes p^(2^k) in F(67!) can be depicted as:
    6|@
    5|
    4| @
    3| @@@
    2| @@ @@
    1| @@@@ @@@@@
    0| @@  @@@   @@@@@@@@
  ---+-------------------
  k/p|    111122334445566
     |2357137939171373917
- G(67!) has 4 connected components:
    6|A
    5|
    4| B
    3| BBB
    2| BB BB
    1| BBBB CCCCC
    0| BB  CCC   DDDDDDDD
  ---+-------------------
  k/p|    111122334445566
     |2357137939171373917
- hence a(67!) = 4.
		

Crossrefs

A050376, A059895, A059896, A306697 are used in a formula defining this sequence.
A329050 corresponds to the array depicted in the first example, with prime(n+1) = p.
The formula section details how the sequence maps the terms of A002110, A066205.
A003961, A225546, A340346 are used to express relationship between terms of this sequence.

Programs

  • PARI
    See Links section.

Formula

If m and n are coprime, then a(m * n) <= a(m) + a(n).
a(p^k) = A069010(k) for any k >= 0 and any prime number p.
a(n) <= A064547(n).
a(A002110(k)) = 1 for any k > 0.
a(A066205(k)) = k for any k > 0.
From Peter Munn, Jan 05 2021: (Start)
(1) a(1) = 0, otherwise a(n) > 0.
For any k, n > 0:
(2a) a(A050376(k)) = 1;
(2b) a(A059896(n,k)) <= a(n) + a(k);
(2c) a(A059896(n,k)) = a(n) + a(k) if and only if A059895(A306697(n,24), k) = 1 and A059895(n, A306697(k,24)) = 1.
For any n > 0, write n = j * k^2 * m^4, j, k squarefree, m > 0:
(3a) a(n) <= a(j) + a(k) + a(m);
(3b) if gcd(j, k) = 1, a(n) = a(j) + a(n/j);
(3c) if gcd(j, k) = j, a(n) = a(n/j);
(3d) if gcd(k, m) = 1, a(n) = a(n/m^4) + a(m^4);
(3e) if gcd(j, k) = k and gcd(k, m) = 1, a(n) = a(j) + a(m).
For any n > 0:
(4a) a(n^2) = a(A003961(n)) = a(A225546(n)) = a(n);
(4b) a(n) = a(A340346(n)) + a(n/A340346(n)).
For any odd n > 0 (with k >= 0, m >= 0):
(5) If n = 9^k * (6m + 1) or n = 9^k * (6m + 5) then a(2n) = a(n) + 1; otherwise a(2n) = a(n).
(End)
Previous Showing 11-18 of 18 results.