cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A060485 Number of 7-block tricoverings of an n-set.

Original entry on oeis.org

43, 4520, 244035, 10418070, 401861943, 14778678180, 530817413155, 18837147108890, 664260814445943, 23345018969140440, 818942064306004275, 28699514624047140510, 1005201938765467579543, 35196266296400319440300
Offset: 4

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Formula

a(n) = (1/7!)*(35^n - 7*20^n - 21*15^n + 42*10^n + 105*8^n + 105*7^n + 70*5^n - 945*4^n - 525*3^n + 2450*2^n - 1470).
E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..infinity}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: x^4*(27300000*x^7 +9288000*x^6 -17908650*x^5 +6008735*x^4 -796380*x^3 +38552*x^2 +210*x -43) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(7*x -1)*(8*x -1)*(10*x -1)*(15*x -1)*(20*x -1)*(35*x -1)). - Colin Barker, Jan 12 2013

A094631 Number of n-block 3-uniform T_0-covers.

Original entry on oeis.org

1, 0, 0, 184, 16936, 2711904, 675457000, 232383728378, 105676839790294, 61466235823794521, 44524673319233300950, 39314601406037457009543, 41574584860907056125473119, 51879840704758774687928224799, 75441055286834286248687362255451, 126462548502721304612260672370098185
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 15 2004

Keywords

Comments

a(n) is the number of binary matrices with n distinct columns and any number of distinct nonzero rows with 3 ones in every column and columns in decreasing lexicographic order. - Andrew Howroyd, Jan 25 2020

Crossrefs

Row n=3 of A331569.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 25 2020

A094630 Number of 3-uniform T_0-covers on n vertices.

Original entry on oeis.org

1, 0, 0, 0, 5, 893, 1039947, 34351783511, 72057317345649377, 19342812465159881755696499, 1329227995591486918148744122456237749, 46768052394574271874021714673583968385714779097997, 1684996666696914425950059618212919561731019777110516294609942096153
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 15 2004

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={Vec(serlaplace(exp(-x + x^2/2 + x^3/3 + O(x*x^n))*sum(k=0, n, 2^binomial(k, 3)*exp(-2^(k-1)*x^2 + O(x*x^(n-k)))*x^k/k!)))} \\ Andrew Howroyd, Jan 29 2020

Formula

E.g.f.: exp(-x+x^2/2+x^3/3)*Sum_{n>=0} 2^binomial(n, 3)*exp(-2^(n-1)*x^2)*x^n/n!.
Previous Showing 11-13 of 13 results.