A157406
The integer partitions of n taken as digits in base n+1 and listed in the Hindenburg order.
Original entry on oeis.org
0, 1, 2, 4, 3, 9, 21, 4, 16, 12, 56, 156, 5, 25, 20, 115, 85, 475, 1555, 6, 36, 30, 204, 24, 162, 1086, 114, 792, 5202, 19608, 7, 49, 42, 329, 35, 273, 2121, 217, 210, 1673, 12873, 1169, 9289, 70217, 299593
Offset: 0
[0] <-> [[ ]]
[1] <-> [[1]]
[2,4] <-> [[2],[1,1]]
[3,9,21] <-> [[3],[1,2],[1,1,1]]
[4,16,12,56,156] <-> [[4],[1,3],[2,2],[1,1,2],[1,1,1,1]]
-
a := proc(n) local rev,P,R,i,l,s,k,j;
rev := l -> [seq(l[nops(l)-j+1],j=1..nops(l))];
P := rev(combinat[partition](n)); R := NULL;
for i to nops(P) do l := convert(P[i],base,n+1,10);
s := add(l[k]*10^(k-1),k=1..nops(l));
R := R,s; od; R end: [0,seq(a(i),i=1..7)];
A157407
The integer partitions of n taken as digits in base n+1 and listed in the reflected Hindenburg order.
Original entry on oeis.org
0, 1, 4, 2, 21, 6, 3, 156, 32, 12, 8, 4, 1555, 260, 50, 45, 15, 10, 5, 19608, 2802, 408, 114, 402, 66, 24, 60, 18, 12, 6, 299593, 37450, 4690, 658, 4683, 595, 147, 91, 588, 84, 28, 77, 21, 14, 7
Offset: 0
[0] <-> [[ ]]
[1] <-> [[1]]
[4,2] <-> [[1,1],[2]]
[21,6,3] <-> [[1,1,1],[2,1],[3]]
[156,32,12,8,4] <-> [[1,1,1,1],[2,1,1],[2,2],[3,1],[4]]
-
a := proc(n) local rev,P,R,Q,i,l,s,k,j;
rev := l -> [seq(l[nops(l)-j+1],j=1..nops(l))];
P := combinat[partition](n); R := NULL;
for i to nops(P) do Q := rev(P[i]);
l := convert(Q,base,n+1,10);
s := add(l[k]*10^(k-1), k=1..nops(l));
R:= R,s; od; R end: [0,seq(a(i),i=1..7)];
A175151
a(n) = Sum_{i=1..n} ((i+1)^i - 1)/i.
Original entry on oeis.org
1, 5, 26, 182, 1737, 21345, 320938, 5701778, 116812889, 2710555349, 70256770866, 2011763864406, 63066746422417, 2148275748236033, 79009709388692498, 3120334201617871778, 131703367127423550129, 5916556161455825857509, 281857608793034773225930
Offset: 1
-
[(&+[((j+1)^j -1)/j: j in [1..n]]): n in [1..30]]; // G. C. Greubel, Aug 16 2022
-
Accumulate[Table[((i+1)^i-1)/i,{i,20}]] (* Harvey P. Dale, Jul 08 2017 *)
-
[sum(((j+1)^j -1)/j for j in (1..n)) for n in (1..30)] # G. C. Greubel, Aug 16 2022
A215159
a(n) = floor(n^n / (n+1)).
Original entry on oeis.org
1, 0, 1, 6, 51, 520, 6665, 102942, 1864135, 38742048, 909090909, 23775972550, 685853880635, 21633936185160, 740800455037201, 27368368148803710, 1085102592571150095, 45957792327018709120, 2070863582910344082917, 98920982783015679456198
Offset: 0
Cf.
A060072 is essentially floor((n+1)^n / n).
Cf.
A173499 is equal to floor((n-1)^n / n).
Cf.
A023037 is essentially floor((n+1)^(n+1) / n).
-
[Floor(n^n/(n+1)): n in [0..30]]; // G. C. Greubel, Aug 16 2022
-
Table[If[n==0, 1, Floor[n^n/(n+1)]], {n,0,30}] (* G. C. Greubel, Aug 16 2022 *)
-
for n in range(55):
print(n**n // (n+1), end=",")
-
[(n^n//(n+1)) for n in (0..30)] # G. C. Greubel, Aug 16 2022
A177164
a(n) = (n^r - 1)/r^2, where r = (n^(n-1) - 1)/(n-1).
Original entry on oeis.org
1, 5, 9972894583, 449853889404077636694265177903207995382439448590987815041588427345865911961016023550064137351211162870609
Offset: 2
a(10) = (10^111111111 - 1)/111111111^2.
Comments