cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A060169 Number of orbits of length n under the automorphism of the 3-torus whose periodic points are counted by A001945.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 2, 2, 2, 4, 4, 5, 8, 6, 12, 13, 16, 23, 26, 35, 46, 54, 76, 89, 120, 154, 192, 255, 322, 411, 544, 679, 898, 1145, 1476, 1925, 2466, 3201, 4156, 5338, 6978, 8985
Offset: 1

Views

Author

Thomas Ward, Mar 13 2001

Keywords

Comments

The sequence A001945 records the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.

Examples

			u(17) = 8 since the map whose periodic points are counted by A001945 has 1 fixed point and 137 points of period 17, hence 8 orbits of length 7.
		

Crossrefs

Formula

a(n) = (1/n)* Sum_{ d divides n } mu(d)*A001945(n/d).

A268592 a(n) = (6/n^3) * Sum_{d|n} moebius(n/d)*binomial(2*d,d).

Original entry on oeis.org

12, 3, 4, 6, 12, 25, 60, 150, 400, 1107, 3180, 9386, 28404, 87711, 275764, 880470, 2849916, 9336508, 30918732, 103384758, 348725540, 1185630123, 4060210764, 13996354586, 48541672872, 169293988125, 593488622344, 2090567755278, 7396924802052, 26281018091013, 93738717046476, 335563502259798
Offset: 1

Views

Author

Max Alekseyev, Feb 07 2016

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (6/n^3)* DivisorSum[n, MoebiusMu[n/#] Binomial[2 #, #] &]; Array[a, 50] (* G. C. Greubel, Dec 15 2017 *)
  • PARI
    { a(n) = sumdiv(n, d, moebius(n/d)*binomial(2*d, d))*6/n^3; }

Formula

a(n) = A007727(n)*6/n^3 = A045630(n)*12/n^3 = A060165(n)*6/n^2 = A022553(n)*12/n^2 = A268619(n)*6/n.
For n == 0, 1, or 3 (mod 4), a(n) = 2*A254593(n); for n == 2 (mod 4), a(n) = 2*A254593(n) - A254593(n/2)/2.

A060172 Number of orbits of length n under a map whose periodic points are counted by A027306.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 9, 19, 28, 62, 93, 205, 315, 703, 1091, 2440, 3855, 8616, 13797, 30801, 49929, 111311, 182361, 405751, 671088, 1490409, 2485504, 5509504, 9256395, 20480421, 34636833, 76499520, 130150493, 286960946, 490853403, 1080476338, 1857283155, 4081876927, 7048151355
Offset: 1

Views

Author

Thomas Ward, Mar 13 2001

Keywords

Comments

The sequence A027306 records the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.

Examples

			u(7) = 9 since the map whose periodic points are counted by A027306 has 1 fixed point and 64 points of period 7, hence 9 orbits of length 7.
		

Crossrefs

Programs

  • PARI
    a027306(n) = (2^n + if(n%2, 0, binomial(n, n/2)))/2;
    a(n) = (1/n)*sumdiv(n, d, moebius(d)*a027306(n/d)); \\ Michel Marcus, Sep 11 2017

Formula

a(n) = (1/n)* Sum_{ d divides n } mu(d)*A027306(n/d).

Extensions

More terms from Michel Marcus, Sep 11 2017

A060173 Number of orbits of length n under a map whose periodic points are counted by A056045.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 12, 10, 30, 1, 139, 1, 252, 231, 920, 1, 3780, 1, 10250, 5601, 32076, 1, 149390, 2126, 400036, 173692, 1475642, 1, 6196651, 1, 19113136, 5864915, 68635494, 201405, 289525026, 1, 930138540, 208267554, 3469290971, 1, 14075005210, 1, 47994721225, 7683440470
Offset: 1

Views

Author

Thomas Ward, Mar 13 2001

Keywords

Comments

The sequence A056045 records the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.

Examples

			a(7) = 1 since the map whose periodic points are counted by A056045 has 1 fixed point and 8 points of period 7, hence 1 orbits of length 7.
		

Crossrefs

Programs

  • PARI
    a056045(n) = sumdiv(n, d, binomial(n, d));
    a(n) = (1/n)*sumdiv(n, d, moebius(d)*a056045(n/d)); \\ Michel Marcus, Sep 11 2017

Formula

a(n) = (1/n)* Sum_{ d divides n } mu(d)*A056045(n/d).

Extensions

More terms from Michel Marcus, Sep 11 2017

A268619 a(n) = (1/n^2) * Sum_{d|n} moebius(n/d)*binomial(2*d,d).

Original entry on oeis.org

2, 1, 2, 4, 10, 25, 70, 200, 600, 1845, 5830, 18772, 61542, 204659, 689410, 2347920, 8074762, 28009524, 97909318, 344615860, 1220539390, 4347310451, 15564141262, 55985418344, 202256970300, 733607281875, 2670698800548, 9755982857964, 35751803209918, 131405090455065, 484316704740126, 1789672012052256
Offset: 1

Views

Author

Max Alekseyev, Feb 09 2016

Keywords

Comments

6*a(n) is divisible by n (cf. A268592).

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * Binomial[2*#, #] &] / n^2; Array[a, 35] (* Amiram Eldar, Aug 24 2023 *)
  • PARI
    { a(n) = sumdiv(n, d, moebius(n/d)*binomial(2*d, d))/n^2; }

Formula

a(n) = (1/n^2)* Sum_{d|n} A008683(n/d)*A000984(d).
a(n) = A007727(n)/n^2 = A045630(n)*2/n^2 = A060165(n)/n = A022553(n)*2/n.

A349001 The number of Lyndon words of size n from an alphabet of 5 letters and 1st and 2nd letter of the alphabet with equal frequency in the words.

Original entry on oeis.org

1, 3, 4, 14, 46, 174, 656, 2640, 10790, 45340, 193600, 839820, 3686424, 16353924, 73187456, 330052646, 1498335650, 6841899606, 31404443032, 144814450188, 670552118244, 3116578216310, 14534401932712, 67992210407514, 318969964124256, 1500268062754830
Offset: 0

Views

Author

R. J. Mathar, Nov 05 2021

Keywords

Comments

Counts a subset of the Lyndon words in A001692. Here there is no requirement of how often the 3rd to 5th letter of the alphabet are in the admitted word, only on the frequency of the 1st and 2nd letter of the alphabet.
Let T(n,k,M) be the number of words of length n drawn from an alphabet of size M where the first k letters of the alphabet appear with the same frequency f in each word. Then T(n,k,M) = Sum_{f=0..floor(n/k)} (M-k)^(n-f*k) * Product_{i=0..k-1} binomial(n-i*f,f) and T(n,2,5) = A026375(n), T(n,3,6) = A294035(n), T(n,2,6) = A081671(n). Removing the words with cycles by the inclusion-exclusion principle by a Mobius Transform gives words of length n of that type without cycles and division through n the Lyndon words of that type. - R. J. Mathar, Nov 07 2021

Examples

			Examples for the alphabet {0,1,2,3,4}:
a(0)=1 counts (), the empty word.
a(3)=14 counts (021) (031) (041) (012) (013) (223) (233) (243) (014) (224) (234) (334) (244) (344), words of length 3 where the letters 0 and the 1 occur both either not or once.
a(4)=46 counts (0011) (0221) (0321) (0421) (0231) (0331) (0431) (0241) (0341) (0441) (0212) (0312) (0412) (0122) (0132) (0142) (0213) (0313) (0413) (0123) (2223) (0133) (2233) (2333) (2433) (0143) (2243) (2343) (2443) (0214) (0314) (0414) (0124) (2224) (2324) (0134) (2234) (2334) (3334) (2434) (0144) (2244) (2344) (3344) (2444) (3444).
		

Crossrefs

Cf. A022553 (alphabet of 2 letters), A290277 (of 3 letters), A060165 (of 4 letters), A026375.

Programs

  • PARI
    a(n) = if(n>0, sumdiv(n, d, moebius(n/d)*sum(k=0, d, binomial(d,k)*binomial(2*k,k)))/n, n==0) \\ Andrew Howroyd, Jan 14 2023

Formula

n*a(n) = Sum_{d|n} mu(d)*A026375(n/d) where mu = A008683.

Extensions

Terms a(16) and beyond from Andrew Howroyd, Jan 14 2023

A349002 The number of Lyndon words of size n from an alphabet of 4 letters and 1st, 2nd and 3rd letter of the alphabet with equal frequency in the words.

Original entry on oeis.org

1, 1, 0, 2, 6, 12, 34, 120, 354, 1082, 3636, 12270, 40708, 139062, 484866, 1692268, 5944470, 21134808, 75625330, 271720146, 982116648, 3569558058, 13025614962, 47714385708, 175470892468, 647508620070, 2396613522804, 8896422981608, 33114570409896, 123566641829256
Offset: 0

Views

Author

R. J. Mathar, Nov 05 2021

Keywords

Comments

Counts a subset of the Lyndon words in A027377. Here there is no requirement of how often the 4th letter of the alphabet occurs in the admitted word, only on the frequency of the 1st to 3rd letter of the alphabet.

Examples

			Examples for the alphabet {0,1,2,3}:
a(0)=1 counts (), the empty word.
a(3)=2 counts (021) (012).
a(4)=6 counts (0321) (0231) (0312) (0132) (0213) (0123).
a(5)=12 counts (03321) (03231) (02331) (03312) (03132) (01332) (03213) (02313) (03123) (01323) (02133) (01233).
a(6)=34 counts (020211) (002211) (012021) (002121) (010221) (001221) (033321) (033231) (032331) (023331) (012102) (011202) (002112) (010212) (001212) (033312) (011022) (010122) (001122) (033132) (031332) (013332) (033213) (032313) (023313) (033123) (031323) (013323) (032133) (023133) (031233) (013233) (021333) (012333).
		

Crossrefs

Programs

  • PARI
    a(n) = if(n>0, sumdiv(n, d, moebius(n/d)*sum(k=0, d\3, d!/(k!^3*(d-3*k)!)))/n, n==0) \\ Andrew Howroyd, Jan 14 2023

Formula

n*a(n) = Sum_{d|n} mu(d)*A344560(n/d) where mu = A008683.

Extensions

Terms corrected and extended by Andrew Howroyd, Jan 14 2023
Previous Showing 11-17 of 17 results.