cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A022553 Number of binary Lyndon words containing n letters of each type; periodic binary sequences of period 2n with n zeros and n ones in each period.

Original entry on oeis.org

1, 1, 1, 3, 8, 25, 75, 245, 800, 2700, 9225, 32065, 112632, 400023, 1432613, 5170575, 18783360, 68635477, 252085716, 930138521, 3446158600, 12815663595, 47820414961, 178987624513, 671825020128, 2528212128750, 9536894664375, 36054433807398, 136583760011496
Offset: 0

Views

Author

Keywords

Comments

Also number of asymmetric rooted plane trees with n+1 nodes. - Christian G. Bower
Conjecturally, number of irreducible alternating Euler sums of depth n and weight 3n.
a(n+1) is inverse Euler transform of A000108. Inverse Witt transform of A006177.
Dimension of the degree n part of the primitive Lie algebra of the Hopf algebra CQSym (Catalan Quasi-Symmetric functions). - Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Oct 22 2006
For n>0, 2*a(n) is divisible by n (cf. A268619), 12*a(n) is divisible by n^2 (cf. A268592). - Max Alekseyev, Feb 09 2016

Examples

			a(3)=3 counts 6-periodic 000111, 001011 and 001101. a(4)=8 counts 00001111, 00010111, 00011011, 00011101, 00100111, 00101011, 00101101, and 00110101. - _R. J. Mathar_, Oct 20 2021
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 336 (4.4.64)

Crossrefs

Cf. A003239, A005354, A000740, A007727, A086655, A289978 (multiset trans.), A001037 (binary Lyndon wds.), A074655 (3 letters), A074656 (4 letters).
A diagonal of the square array described in A051168.

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 1,
            add(mobius(n/d)*binomial(2*d, d), d=divisors(n))/(2*n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 21 2011
  • Mathematica
    a[n_] := Sum[MoebiusMu[n/d]*Binomial[2d, d], {d, Divisors[n]}]/(2n); a[0] = 1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 02 2015 *)
  • PARI
    a(n)=if(n<1,n==0,sumdiv(n,d,moebius(n/d)*binomial(2*d,d))/2/n)
    
  • Python
    from sympy import mobius, binomial, divisors
    def a(n):
        return 1 if n == 0 else sum(mobius(n//d)*binomial(2*d, d) for d in divisors(n))//(2*n)
    print([a(n) for n in range(31)]) # Indranil Ghosh, Aug 05 2017
    
  • Sage
    def a(n):
        return 1 if n ==0 else sum(moebius(n//d)*binomial(2*d, d) for d in divisors(n))//(2*n)
    # F. Chapoton, Apr 23 2020

Formula

a(n) = A060165(n)/2 = A007727(n)/(2*n) = A045630(n)/n.
Product_n (1-x^n)^a(n) = 2/(1+sqrt(1-4*x)); a(n) = 1/(2*n) * Sum_{d|n} mu(n/d)*C(2*d,d). Also Moebius transform of A003239. - Christian G. Bower
a(n) ~ 2^(2*n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 11 2014
G.f.: 1 + Sum_{k>=1} mu(k)*log((1 - sqrt(1 - 4*x^k))/(2*x^k))/k. - Ilya Gutkovskiy, May 18 2019

A060165 Number of orbits of length n under the map whose periodic points are counted by A000984.

Original entry on oeis.org

2, 2, 6, 16, 50, 150, 490, 1600, 5400, 18450, 64130, 225264, 800046, 2865226, 10341150, 37566720, 137270954, 504171432, 1860277042, 6892317200, 25631327190, 95640829922, 357975249026, 1343650040256, 5056424257500, 19073789328750, 72108867614796
Offset: 1

Views

Author

Thomas Ward, Mar 13 2001

Keywords

Comments

The sequence A000984 seems to record the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.
The number of n-cycles in the graph of overlapping m-permutations where n <= m. - Richard Ehrenborg, Dec 10 2013
a(n) is divisible by n (cf. A268619), 6*a(n) is divisible by n^2 (cf. A268592). - Max Alekseyev, Feb 09 2016
Apparently the number of Lyndon words of length n with a 4-letter alphabet (see A027377) where the first letter of the alphabet appears with the same frequency as the second of the alphabet. E.g a(1)=2 counts the words (2), (3), a(2)= 2 counts (01) (23), a(3)=6 counts (021) (031) (012) (013) (223) (233). R. J. Mathar, Nov 04 2021

Examples

			a(5) = 50 because if a map has A000984 as its periodic points, then it would have 2 fixed points and 252 points of period 5, hence 50 orbits of length 5.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*binomial(2*d, d), d=divisors(n))/n:
    seq(a(n), n=1..30); # Alois P. Heinz, Dec 10 2013
  • Mathematica
    a[n_] := (1/n)*Sum[MoebiusMu[d]*Binomial[2*n/d, n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jul 16 2015 *)
  • PARI
    a(n)=sumdiv(n,d,moebius(n/d)*binomial(2*d,d))/n \\ Charles R Greathouse IV, Dec 10 2013
    
  • Python
    from sympy import mobius, binomial, divisors
    def a(n): return sum(mobius(n//d) * binomial(2*d, d) for d in divisors(n))//n
    print([a(n) for n in range(1, 31)])  # Indranil Ghosh, Jul 24 2017

Formula

a(n) = (1/n) * Sum_{d|n} mu(d) A000984(n/d) with mu = A008683.
a(n) = 2*A022553(n).
a(n) = A007727(n)/n. - R. J. Mathar, Jul 24 2017
G.f.: 2 * Sum_{k>=1} mu(k)*log((1 - sqrt(1 - 4*x^k))/(2*x^k))/k. - Ilya Gutkovskiy, May 18 2019
a(n) ~ 4^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 04 2022

A007727 Number of 2n-bead black-white strings with n black beads and fundamental period 2n.

Original entry on oeis.org

1, 2, 4, 18, 64, 250, 900, 3430, 12800, 48600, 184500, 705430, 2703168, 10400598, 40113164, 155117250, 601067520, 2333606218, 9075085776, 35345263798, 137846344000, 538257870990, 2104098258284, 8233430727598, 32247600966144
Offset: 0

Views

Author

Doug Bowman, bowman(AT)math.uiuc.edu

Keywords

Comments

For n>0, a(n) is divisible by n^2 (cf. A268619) and 6*a(n) is divisible by n^3 (cf. A268592). - Max Alekseyev, Feb 07 2016

Crossrefs

Programs

  • Maple
    A007727 := proc(n)
        if n = 0 then
            1;
        else
            add(numtheory[mobius](n/d)*binomial(2*d,d), d =numtheory[divisors](n)) ;
        end if ;
    end proc:
    seq(A007727(n),n=0..10) ; # R. J. Mathar, Nov 10 2021
  • Mathematica
    a[n_] := If[n == 0, 1, Sum[MoebiusMu[n/d] Binomial[2d, d], {d, Divisors[n]}]];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, May 05 2023 *)
  • PARI
    { a(n) = if(n>0,sumdiv(n, d, moebius(n/d)*binomial(2*d, d)),0); }

Formula

For n>0, a(n) = Sum_{d|n} A008683(n/d)*A000984(d).
For n>0, a(n) = 2 * A045630(n).
a(0)=1, a(n) = n * A060165(n) = 2n * A022553(n). - Ralf Stephan, Sep 01 2003

Extensions

Edited by Max Alekseyev, Feb 09 2016

A268592 a(n) = (6/n^3) * Sum_{d|n} moebius(n/d)*binomial(2*d,d).

Original entry on oeis.org

12, 3, 4, 6, 12, 25, 60, 150, 400, 1107, 3180, 9386, 28404, 87711, 275764, 880470, 2849916, 9336508, 30918732, 103384758, 348725540, 1185630123, 4060210764, 13996354586, 48541672872, 169293988125, 593488622344, 2090567755278, 7396924802052, 26281018091013, 93738717046476, 335563502259798
Offset: 1

Views

Author

Max Alekseyev, Feb 07 2016

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (6/n^3)* DivisorSum[n, MoebiusMu[n/#] Binomial[2 #, #] &]; Array[a, 50] (* G. C. Greubel, Dec 15 2017 *)
  • PARI
    { a(n) = sumdiv(n, d, moebius(n/d)*binomial(2*d, d))*6/n^3; }

Formula

a(n) = A007727(n)*6/n^3 = A045630(n)*12/n^3 = A060165(n)*6/n^2 = A022553(n)*12/n^2 = A268619(n)*6/n.
For n == 0, 1, or 3 (mod 4), a(n) = 2*A254593(n); for n == 2 (mod 4), a(n) = 2*A254593(n) - A254593(n/2)/2.

A045630 Number of 2n-bead black-white complementable strings with n black beads and fundamental period 2n.

Original entry on oeis.org

1, 1, 2, 9, 32, 125, 450, 1715, 6400, 24300, 92250, 352715, 1351584, 5200299, 20056582, 77558625, 300533760, 1166803109, 4537542888, 17672631899, 68923172000, 269128935495, 1052049129142, 4116715363799, 16123800483072
Offset: 0

Views

Author

Keywords

Comments

For n>0, a(n) is divisible by n (cf. A022553), 2*a(n) is divisible by n^2 (cf. A268619), and 12*a(n) is divisible by n^3 (cf. A268592). - Max Alekseyev, Feb 07 2016

Crossrefs

Cf. A007727.

Formula

Moebius transform of A001700(n-1). - Christian G. Bower.
For n>0, a(n) = A007727(n)/2 = n * A022553(n).

A268617 a(n) = (1/n^2) * Sum_{d|n} moebius(n/d)*binomial(3*d,d).

Original entry on oeis.org

3, 3, 9, 30, 120, 513, 2373, 11484, 57861, 300420, 1599477, 8692074, 48061689, 269694453, 1532744100, 8808000696, 51110965698, 299155382325, 1764498529977, 10479611189400, 62629105220514, 376411503694677, 2273982941083533, 13802537605619124, 84141675425838225, 514987312014416553, 3163620641291970255
Offset: 1

Views

Author

Max Alekseyev, Feb 09 2016

Keywords

Comments

2*a(n) is divisible by n (cf. A268618).

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * Binomial[3*#, #] &] / n^2; Array[a, 30] (* Amiram Eldar, Aug 24 2023 *)
  • PARI
    { a(n) = sumdiv(n,d,moebius(n/d)*binomial(3*d,d))/n^2; }

Formula

a(n) = (1/n^2)* Sum_{d|n} A008683(n/d)*A005809(d).
a(n) = A060170(n) / n = A268618(n)*n/2.
Showing 1-6 of 6 results.