cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A285805 Prime numbers p such that 6*p-1 and 6*p+1 are composite numbers.

Original entry on oeis.org

31, 41, 71, 79, 89, 97, 139, 149, 167, 179, 191, 193, 211, 223, 251, 281, 307, 337, 349, 353, 401, 409, 419, 421, 431, 433, 479, 487, 491, 499, 509, 521, 541, 547, 563, 571, 587, 619, 631, 643, 659, 673, 677, 691, 701, 719, 739, 757, 769, 809
Offset: 1

Views

Author

Dimitris Valianatos, Apr 26 2017

Keywords

Crossrefs

Programs

  • Maple
    filter:= n -> isprime(n) and not isprime(6*n-1) and not isprime(6*n+1):
    select(filter, [seq(i,i=3..1000,2)]); # Robert Israel, Jan 05 2020
  • Mathematica
    Select[Prime@Range@150, ! PrimeQ[6 # - 1] && ! PrimeQ[6 # + 1] &] (* Robert G. Wilson v, Apr 27 2017 *)
    Select[Prime[Range[150]],NoneTrue[6#+{1,-1},PrimeQ]&] (* Harvey P. Dale, Jun 10 2022 *)
  • PARI
    {forprime(n=3, 1000, if(!isprime(6*n-1)&&!isprime(6*n+1), print1(n", ")))}

A358381 Primes p such that q1=6*p-1 and q2=6*p+1 are also primes (twin primes) and q1 is a Sophie Germain prime (i.e., 2*q1+1 is prime).

Original entry on oeis.org

2, 5, 7, 47, 107, 907, 2137, 2347, 3407, 4547, 4597, 8377, 9067, 9277, 9767, 14537, 16427, 18307, 19507, 19997, 23447, 23917, 26927, 27437, 28837, 29297, 33037, 37307, 38327, 45127, 46457, 50957, 52957, 55897, 59077, 59407, 60317, 63667, 65497, 69767, 74377, 77527, 86587, 86837
Offset: 1

Views

Author

Tamas Nagy, Nov 12 2022

Keywords

Comments

Except for the first 2 terms, every term's last digit is a 7 in base 10.

Crossrefs

Subsequence of A060212.
Cf. A005384.

Programs

  • Maple
    filter:= p -> andmap(isprime, [p, 6*p-1, 6*p+1, 12*p-1]):
    select(filter, [2,5,seq(i,i=7..10^5,10)]); # Robert Israel, Dec 23 2022
  • Mathematica
    Select[Prime[Range[8500]], PrimeQ[6*# - 1] && PrimeQ[6*# + 1] && PrimeQ[12*# - 1] &] (* Amiram Eldar, Nov 13 2022 *)

A383475 Numbers k such that k*2^d is the average of a twin prime pair for some divisor d of k.

Original entry on oeis.org

2, 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 39, 42, 45, 48, 51, 54, 60, 69, 72, 75, 78, 81, 90, 96, 99, 105, 108, 114, 120, 129, 132, 135, 141, 144, 150, 156, 165, 168, 174, 180, 186, 192, 201, 210, 216, 228, 231, 234, 240, 252, 258, 261, 264, 270, 282, 285, 288, 300
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 27 2025

Keywords

Examples

			2 is a term in the sequence because 2*2^1 = 4 is the average of twin primes 3 and 5 for divisor d = 1 of k = 2.
		

Crossrefs

Supersequence of 3*A002822 and 3*A060212.

Programs

  • Magma
    [k: k in [1..300] | not #[d: d in Divisors(k) | IsPrime(k*2^d-1) and IsPrime(k*2^d+1)] eq 0];
    
  • Mathematica
    q[k_] := AnyTrue[Divisors[k], And @@ PrimeQ[k * 2^# + {-1, 1}] &]; Select[Range[300], q] (* Amiram Eldar, Apr 28 2025 *)
  • PARI
    isok(k) = fordiv(k, d, if (isprime(k*2^d-1) && isprime(k*2^d+1), return(1))); return(0); \\ Michel Marcus, Apr 28 2025

A386724 Twin primes p such that 6p+1, 6p-1 is a twin prime pair.

Original entry on oeis.org

3, 5, 7, 17, 103, 107, 137, 283, 313, 347, 1033, 2027, 3257, 3673, 4217, 4547, 5023, 9433, 9767, 11833, 14593, 15137, 15733, 18253, 19423, 20717, 20983, 23537, 25847, 26113, 28753, 32057, 32323, 33073, 35053, 37307, 38327, 39163, 43607, 44623, 46183, 46273, 47743, 48407
Offset: 1

Views

Author

Marc Morgenegg, Jul 31 2025

Keywords

Comments

{3,5} and {5,7} are the only twin prime pairs occurring in this since (6p-1)*(6p+1)*(6p+11)*(6p+13) is always divisible by 5. Therefore the smallest possible gaps for p>7 is 4 (cousin primes).

Crossrefs

Cf. A002822, A001359, A014574, A176131 (subsequence), A182481, A294731. Subset of A060212.

Programs

  • Maple
    q:= p-> isprime(p) and ormap(isprime, [p-2, p+2]) and andmap(isprime, [6*p-1, 6*p+1]):
    select(q, [2*i+1$i=1..25000])[];  # Alois P. Heinz, Jul 31 2025
  • Mathematica
    Select[Prime[Range[5000]], Or @@ PrimeQ[# + {-2, 2}] && And @@ PrimeQ[6*# + {-1, 1}] &] (* Amiram Eldar, Jul 31 2025 *)

Extensions

More terms from Pontus von Brömssen, Jul 31 2025

A285983 Prime numbers p such that 3*p has distance <= 2 from the nearest twin prime number.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 19, 23, 37, 47, 59, 61, 67, 79, 89, 103, 139, 173, 191, 199, 269, 271, 277, 293, 349, 353, 383, 409, 431, 433, 439, 541, 557, 643, 677, 709, 757, 769, 863, 887, 911, 929, 991, 1039, 1087, 1109, 1123, 1129, 1153, 1181, 1187
Offset: 1

Views

Author

Dimitris Valianatos, Apr 29 2017

Keywords

Comments

Also prime numbers distance <= 1 from an element of A167379. - Danny Rorabaugh, May 04 2017

Crossrefs

Programs

  • Mathematica
    fQ[n_] := (PrimeQ[3n -4] && PrimeQ[3n -2]) || (PrimeQ[3n +2] && PrimeQ[3n +4]); Join[{2}, Select[ Prime@ Range@ 200, fQ]] (* Robert G. Wilson v, Apr 30 2017 *)
  • PARI
    {
    print1(2", ");
    forprime(n=3,1000,
             p3=3*n;
             if((isprime(p3+2)&&isprime(p3+4))||(isprime(p3-2)&&isprime(p3-4)),
                 print1(n", ")
               )
            )
    }
Previous Showing 11-15 of 15 results.