cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A291902 Sums of the cubes of the descent set statistics for permutations on n elements.

Original entry on oeis.org

1, 1, 2, 18, 360, 14460, 994680, 109021500, 17815754880, 4147063256448, 1323985303267200, 562636176102554400, 310405397451855552000, 217731000904433587359360, 190749857434239995742090240, 205540893695782384696324368000, 268793206446238988670401236992000
Offset: 0

Views

Author

Richard Ehrenborg, Sep 05 2017

Keywords

Examples

			For n=4, we have a(4) = 1^3 + 3^3 + 5^5 + 3^3 + 3^3 + 5^3 + 3^3 + 1^3 = 360.
		

Crossrefs

Column k=3 of A334622.

Formula

a(n) = Sum_{j=0..ceiling(2^(n-1))-1} A060351(n,j)^3. - Alois P. Heinz, Sep 15 2020

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 09 2020

A291907 Numbers such that the nonzero digits in the base 3 expansion consists of two 1s and one 2.

Original entry on oeis.org

14, 16, 22, 32, 34, 38, 42, 46, 48, 58, 64, 66, 86, 88, 92, 96, 100, 102, 110, 114, 126, 136, 138, 144, 166, 172, 174, 190, 192, 198, 248, 250, 254, 258, 262, 264, 272, 276, 288, 298, 300, 306, 326, 330, 342, 378, 406, 408, 414, 432, 490, 496, 498, 514, 516, 522
Offset: 1

Views

Author

Richard Ehrenborg, Sep 05 2017

Keywords

Comments

If k belongs to this sequence, A060350(k) and A291903(k) are divisible by 3.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], DigitCount[#, 3, {1, 2}] == {2, 1} &] (* Amiram Eldar, Apr 07 2022 *)

Formula

A023693 INTERSECT A023699. - R. J. Mathar, Nov 10 2017

A137783 a(n) = the number of permutations (p(1), p(2), ..., p(2n+1)) of (1, 2, ..., 2n+1) where, for each k (2 <= k <= 2n+1), the sign of (p(k) - p(k-1)) equals the sign of (p(2n+2-k) - p(2n+3-k)).

Original entry on oeis.org

1, 4, 44, 1028, 40864, 2484032, 214050784, 24831582176, 3731039384576, 704879630525696, 163539441616948736, 45712130697710081024, 15150993151215400441856, 5875388829103413298173952, 2635427286694074346846232576, 1353918066433734600362650169344
Offset: 0

Views

Author

Leroy Quet, Feb 10 2008, Feb 14 2008

Keywords

Comments

There are no such permutations of (1,2,...,2n).

Examples

			Consider the permutation (for n = 3): 3,4,5,2,7,6,1. The signs of the differences between adjacent terms form the sequence: ++-+--, which is the negative of its reversal. So this permutation, among others, is counted when n = 3.
		

Crossrefs

Programs

  • PARI
    { a(n) = my(s,c,r); s=0; forvec(t=vector(n\2,i,[0,2]), c=0; r=[]; for(j=1,#t, if(t[j]==0,c++, if(t[j]==1,r=concat(r,[j]),r=concat(r,[n-j])); ); ); r=vecsort(r); s+=(-2)^c*if(#r,n!/(r[1]!*prod(j=1,#r-1,(r[j+1]-r[j])!)*(n-r[ #r])!),1) ); s } /* Max Alekseyev */

Extensions

First 4 terms calculated by Olivier Gérard
Edited and extended by Max Alekseyev, May 09 2009

A362745 Triangular array read by rows. T(n,k) is the number of ordered pairs of n-permutations with exactly k rise/falls or fall/rises, n >= 0, 0 <= k <= max{0,n-1}.

Original entry on oeis.org

1, 1, 2, 2, 10, 16, 10, 88, 200, 200, 88, 1216, 3536, 4896, 3536, 1216, 24176, 85872, 149152, 149152, 85872, 24176, 654424, 2743728, 5714472, 7176352, 5714472, 2743728, 654424, 23136128, 111842432, 270769536, 407103104, 407103104, 270769536, 111842432, 23136128
Offset: 0

Views

Author

Geoffrey Critzer, May 01 2023

Keywords

Comments

Let ( (a_1,a_2,...,a_n), (b_1,b_2,...,b_n) ) be an ordered pair of n-permutations. Then the pairs (a_i,a_(i+1)) and (b_i,b_(i+1)) are both rises, both falls, a rise and a fall, or a fall and a rise. T(n,k) is the number of ordered pairs of n-permutations that have a total of k rise/falls and fall/rises.

Examples

			Triangle begins:
    1;
    1;
    2,    2;
   10,   16,   10;
   88,  200,  200,   88;
 1216, 3536, 4896, 3536, 1216;
 ...
In the ordered pair of permutations ( (1,2,3,5,4), (4,2,1,3,5) ) we have a rise/fall, rise/fall, rise/rise, fall/rise.  So this ordered pair is counted in T(5,3).
		

Crossrefs

Cf. A060350 (column k=0), A001044 (row sums), A259465.

Programs

  • Maple
    b:= proc(n, u, v) option remember; expand(`if`(n=0, 1,
          add(add(b(n-1, u-j, v-i), i=1..v)+
              add(b(n-1, u-j, v+i-1)*x, i=1..n-v), j=1..u)+
          add(add(b(n-1, u+j-1, v-i)*x, i=1..v)+
              add(b(n-1, u+j-1, v+i-1), i=1..n-v), j=1..n-u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..10);  # Alois P. Heinz, May 01 2023
  • Mathematica
    nn = 8; A[z_] := Total[Select[Import["https://oeis.org/A060350/b060350.txt", "Table"],Length@# == 2 &][[All, 2]]*Table[z^n/n!^2, {n, 0, 250}]];B[n_] := n!^2; e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[((1 - u) A[(1 - u) z])/(1 - u A[(1 - u) z]), {z, 0, nn}], {z, u}]] // Flatten

Formula

Sum_{n>=0} Sum_{k=0..n-1} u^k*z^n/(n!)^2 = ((1 - u) A((1 - u) z))/(1 - u A((1 - u) z)) where A(z) = Sum_{n>=0} A060350*z^n/(n!)^2. Theorem 4 in Carlitz, Scoville, Vaughan link.
Previous Showing 11-14 of 14 results.