cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A347171 Triangle read by rows where T(n,k) is the sum of Golay-Rudin-Shapiro terms GRS(j) (A020985) for j in the range 0 <= j < 2^n and having binary weight wt(j) = A000120(j) = k.

Original entry on oeis.org

1, 1, 1, 1, 2, -1, 1, 3, -1, 1, 1, 4, 0, 0, -1, 1, 5, 2, -2, 1, 1, 1, 6, 5, -4, 3, -2, -1, 1, 7, 9, -5, 3, -3, 3, 1, 1, 8, 14, -4, 0, 0, 2, -4, -1, 1, 9, 20, 0, -6, 6, -4, 0, 5, 1, 1, 10, 27, 8, -14, 12, -10, 8, -3, -6, -1, 1, 11, 35, 21, -22, 14, -10, 10, -11, 7, 7, 1
Offset: 0

Views

Author

Kevin Ryde, Aug 21 2021

Keywords

Comments

Doche and Mendès France form polynomials P_n(y) = Sum_{j=0..2^n-1} GRS(j) * y^wt(j) and here row n is the coefficients of P_n starting from the constant term, so P_n(y) = Sum_{k=0..n} T(n,k)*y^k. They conjecture that the number of real roots of P_n is A285869(n).
Row sum n is the sum of GRS terms from j = 0 to 2^n-1 inclusive, which Brillhart and Morton (Beispiel 6 page 129) show is A020986(2^n-1) = 2^ceiling(n/2) = A060546(n). The same follows by substituting y=1 in the P_n recurrence or the generating function.

Examples

			Triangle begins
        k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7
  n=0:   1
  n=1:   1,  1
  n=2:   1,  2, -1
  n=3:   1,  3, -1,  1
  n=4:   1,  4,  0,  0, -1
  n=5:   1,  5,  2, -2,  1,  1
  n=6:   1,  6,  5, -4,  3, -2, -1
  n=7:   1,  7,  9, -5,  3, -3,  3,  1
For T(5,3), those j in the range 0 <= j < 2^5 with wt(j) = 3 are
  j      =  7 11 13 14 19 21 22 25 26 28
  GRS(j) = +1 -1 -1 +1 -1 +1 -1 -1 -1 +1 total -2 = T(5,3)
		

Crossrefs

Cf. A020985 (GRS), A020986 (GRS partial sums), A000120 (binary weight), A285869.
Columns k=0..3: A000012, A001477, A000096, A275874.
Cf. A165326 (main diagonal), A248157 (second diagonal negated).
Cf. A060546 (row sums), A104969 (row sums squared terms).
Cf. A329301 (antidiagonal sums).
Cf. A104967 (rows reversed, up to signs).

Programs

  • PARI
    my(M=Mod('x, 'x^2-(1-'y)*'x-2*'y)); row(n) = Vecrev(subst(lift(M^n),'x,'y+1));

Formula

T(n,k) = T(n-1,k) - T(n-1,k-1) + 2*T(n-2,k-1) for n>=2, and taking T(n,k)=0 if k<0 or k>n.
T(n,k) = (-1)^k * A104967(n,n-k).
Row polynomial P_n(y) = (1-y)*P_{n-1}(y) + 2*y*P_{n-2}(y) for n>=2. [Doche and Mendès France]
G.f.: (1 + 2*x*y)/(1 + x*(y-1) - 2*x^2*y).
Column g.f.: C_k(x) = 1/(1-x) for k=0 and C_k(x) = x^k * (2*x-1)^(k-1) / (1-x)^(k+1) for k>=1.

A381899 Irregular triangular array read by rows. T(n,k) is the number of length n words x on {0,1} such that I(x) + W(x)*(n-W(x)) = k, where I(x) is the number of inversions in x and W(x) is the number of 1's in x, n >= 0, 0 <= k <= floor(n^2/2).

Original entry on oeis.org

1, 2, 2, 1, 1, 2, 0, 2, 2, 2, 2, 0, 0, 2, 3, 3, 4, 1, 1, 2, 0, 0, 0, 2, 2, 4, 4, 6, 4, 4, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 4, 5, 7, 6, 9, 7, 7, 5, 4, 1, 1, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 4, 4, 8, 6, 10, 12, 14, 12, 14, 10, 10, 6, 4, 2, 2
Offset: 0

Views

Author

Geoffrey Critzer, Mar 09 2025

Keywords

Comments

Sum_{k>=0} T(n,k)*2^k = A132186(n).
Sum_{k>=0} T(n,k)*3^k = A053846(n).
Sum_{k>=0} T(n,k)*q^k = the number of idempotent n X n matrices over GF(q).
It appears that if n is even the n-th row converges to 2,0,0,...,21,13,9,5,4,1,1 which is A226622 reversed, and if n is odd the sequence is twice A226635.
From Alois P. Heinz, Mar 09 2025: (Start)
Sum_{k>=0} k * T(n,k) = 3*A001788(n-1) for n>=1.
Sum_{k>=0} (-1)^k * T(n,k) = A060546(n). (End)

Examples

			Triangle T(n,k) begins:
  1;
  2;
  2, 1, 1;
  2, 0, 2, 2, 2;
  2, 0, 0, 2, 3, 3, 4, 1, 1;
  2, 0, 0, 0, 2, 2, 4, 4, 6, 4, 4, 2, 2;
  ...
T(4,5) = 3 because we have: {0, 1, 0, 0}, {0, 1, 0, 1}, {1, 1, 0, 1}.
		

Crossrefs

Programs

  • Maple
    b:= proc(i, j) option remember; expand(`if`(i+j=0, 1,
         `if`(i=0, 0, b(i-1, j))+`if`(j=0, 0, b(i, j-1)*z^i)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(
             expand(add(b(n-j, j)*z^(j*(n-j)), j=0..n))):
    seq(T(n), n=0..10);  # Alois P. Heinz, Mar 09 2025
  • Mathematica
    nn = 7; B[n_] := FunctionExpand[QFactorial[n, q]]*q^Binomial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[CoefficientList[#, q] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^2, {z, 0, nn}],z]]

Formula

Sum_{n>=0} Sum_{k>=0} T(n,k)*q^k*x^n/(n_q!*q^binomial(n,2)) = e(x)^2 where e(x) = Sum_{n>=0} x^n/(n_q!*q^binomial(n,2)) where n_q! = Product{i=1..n} (q^n-1)/(q-1).

A387025 Start with the list of positive integers L_1 = (1, 2, ...); for n = 1, 2, ..., let m be the least integer > n such that L_n(n) divides L_n(m); L_{n+1}(k) = L_n(k) for any k <> m, L_{n+1}(m) = L_n(m)/L_n(n); a(n) = L_n(n).

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 8, 9, 2, 11, 6, 13, 2, 15, 1, 17, 2, 19, 10, 21, 2, 23, 2, 25, 1, 27, 28, 29, 2, 31, 16, 33, 2, 35, 18, 37, 2, 39, 2, 41, 1, 43, 44, 45, 2, 47, 3, 49, 1, 17, 52, 53, 2, 55, 1, 57, 2, 59, 30, 61, 2, 63, 32, 65, 2, 67, 2, 69, 1, 71, 4, 73, 2
Offset: 1

Views

Author

Rémy Sigrist, Aug 13 2025

Keywords

Comments

Applying the same procedure to the powers of two yields A060546.
Applying the same procedure to the factorial numbers yields A006882.

Examples

			The first terms are:
  n   a(n)  L_n
  --  ----  ------------------------------------------------------
   1     1  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
   2     2  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
   3     3  1, 2, 3, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
   4     2  1, 2, 3, 2, 5, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
   5     5  1, 2, 3, 2, 5, 1, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
   6     1  1, 2, 3, 2, 5, 1, 7, 8, 9,  2, 11, 12, 13, 14, 15, ...
   7     7  1, 2, 3, 2, 5, 1, 7, 8, 9,  2, 11, 12, 13, 14, 15, ...
   8     8  1, 2, 3, 2, 5, 1, 7, 8, 9,  2, 11, 12, 13,  2, 15, ...
   9     9  1, 2, 3, 2, 5, 1, 7, 8, 9,  2, 11, 12, 13,  2, 15, ...
  10     2  1, 2, 3, 2, 5, 1, 7, 8, 9,  2, 11, 12, 13,  2, 15, ...
  11    11  1, 2, 3, 2, 5, 1, 7, 8, 9,  2, 11,  6, 13,  2, 15, ...
  12     6  1, 2, 3, 2, 5, 1, 7, 8, 9,  2, 11,  6, 13,  2, 15, ...
  13    13  1, 2, 3, 2, 5, 1, 7, 8, 9,  2, 11,  6, 13,  2, 15, ...
  14     2  1, 2, 3, 2, 5, 1, 7, 8, 9,  2, 11,  6, 13,  2, 15, ...
  15    15  1, 2, 3, 2, 5, 1, 7, 8, 9,  2, 11,  6, 13,  2, 15, ...
		

Crossrefs

Programs

  • PARI
    { for (n = 1, #a = vector(74, n, n), print1 (a[n]", "); forstep (k = ceil((n+1)/a[n])*a[n], #a, a[n], if (a[k] % a[n]==0, a[k] /= a[n]; break;););); }

Formula

a(p) = p for any prime number p.
a(2*p) = 1 or 2 for any prime number p.

A060549 a(n) is the number of distinct patterns (modulo geometric D3-operations) with strict median-reflective (palindrome) symmetry (i.e., having no other symmetry) which can be formed by an equilateral triangular arrangement of closely packed black and white cells satisfying the local matching rule of Pascal's triangle modulo 2, where n is the number of cells in each edge of the arrangement. The matching rule is such that any elementary top-down triangle of three neighboring cells in the arrangement contains either one or three white cells.

Original entry on oeis.org

0, 1, 2, 2, 6, 6, 12, 14, 28, 28, 60, 60, 120, 124, 248, 248, 504, 504, 1008, 1016, 2032, 2032, 4080, 4080, 8160, 8176, 16352, 16352, 32736, 32736, 65472, 65504, 131008, 131008, 262080, 262080, 524160, 524224, 1048448, 1048448, 2097024, 2097024
Offset: 1

Views

Author

André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001

Keywords

Crossrefs

Programs

  • PARI
    a(n) = { 2^ceil(n/2) - 2^(floor((n + 3)/6) + (n%6==1)) } \\ Harry J. Smith, Jul 07 2009

Formula

a(n) = 2^ceiling(n/2) - 2^(floor((n+3)/6) + d(n)), with d(n)=1 if n mod 6=1 else d(n)=0.
a(n) = A060546(n) - A060548(n) = 2^A008619(n-1) - 2^A008615(n+1), for n >= 1.
G.f.: x^2*(2*x^4 + 2*x^3 + 2*x + 1) / ((2*x^2-1)*(2*x^6-1)). - Colin Barker, Aug 29 2013

A060551 a(n) is the number of nonsymmetric patterns (no reflective, nor rotational symmetry) which may be formed by an equilateral triangular arrangement of closely packed black and white cells satisfying the local matching rule of Pascal's triangle modulo 2, where n is the number of cells in each edge of the arrangement. The matching rule is such that any elementary top-down triangle of three neighboring cells in the arrangement contains either one or three white cells.

Original entry on oeis.org

0, 0, 0, 6, 12, 42, 84, 210, 420, 924, 1860, 3900, 7800, 15996, 31992, 64728, 129528, 260568, 521136, 1045464, 2090928, 4187952, 8376240, 16764720, 33529440, 67084080, 134168160, 268385376, 536772192, 1073642592, 2147285184, 4294769760, 8589539520, 17179472064
Offset: 1

Views

Author

André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,2,-2,-4,-4,10,-4,-4,4,8,8,-16},{0,0,0,6,12,42,84,210,420,924,1860,3900},40] (* Harvey P. Dale, Feb 01 2015 *)
  • PARI
    a(n) = { 2^n-3*2^ceil(n/2)-2^(floor(n/3)+(n%3)%2)+3*2^(floor((n+3)/6)+(n%6==1)) } \\ Harry J. Smith, Jul 07 2009

Formula

a(n) = 2^n - 3*2^ceiling(n/2) - 2^(floor(n/3)+(n mod 3)mod 2) + 3*2^(floor((n+3)/6) + d(n)), with d(n)=1 if n mod 6=1 else d(n)=0.
a(n) = A000079(n) - 3*A060546(n) - A060547(n) + 3*A060548(n).
a(n) = A000079(n) - 3*2^A008619(n-1) - 2^A008611(n-1) + 3*2^A008615(n+1), for n >= 1.
G.f.: -6*x^4*(2*x^6 + 2*x^5 - x^4 + 2*x^3 - x^2 - 1) / ((2*x-1)*(2*x^2-1)*(2*x^3-1)*(2*x^6-1)). - Colin Barker, Aug 29 2013
a(n) = 6*A060552(n). - Andrew Howroyd, Dec 24 2024

Extensions

More terms from Colin Barker, Aug 29 2013

A060553 a(n) is the number of distinct (modulo geometric D3-operations) patterns which can be formed by an equilateral triangular arrangement of closely packed black and white cells satisfying the local matching rule of Pascal's triangle modulo 2, where n is the number of cells in each edge of the arrangement. The matching rule is such that any elementary top-down triangle of three neighboring cells in the arrangement contains either one or three white cells.

Original entry on oeis.org

2, 2, 4, 6, 10, 16, 32, 52, 104, 192, 376, 720, 1440, 2800, 5600, 11072, 22112, 43968, 87936, 175296, 350592, 700160, 1400192, 2798336, 5596672, 11188992, 22377984, 44747776, 89495040, 178973696, 357947392, 715860992, 1431721984, 2863378432, 5726754816
Offset: 1

Views

Author

André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001

Keywords

Crossrefs

Programs

  • PARI
    a(n) = { (2^(n-1) + 2^(floor(n/3) + (n%3)%2))/3 + 2^floor((n-1)/2) } \\ Harry J. Smith, Jul 07 2009

Formula

a(n) = (2^(n-1)+2^(floor(n/3) + (n mod 3)mod 2))/3 + 2^floor((n-1)/2).
a(n) = (A000079(n-1) + A060547(n))/3 + A060546(n)/2.
a(n) = (A000079(n-1) + 2^A008611(n-1))/3 + 2^(A008619(n-1) - 1), for n >= 1.
G.f.: -2*x*(4*x^5 + x^4 - x^3 - 2*x^2 - x + 1) / ((2*x-1)*(2*x^2-1)*(2*x^3-1)). - Colin Barker, Aug 29 2013

Extensions

More terms from Colin Barker, Aug 29 2013

A260211 Irregular triangle read by rows, T(n,k) is the decimal number conversion from an n-bit symmetric binary table arranged in ascending order for n > 1.

Original entry on oeis.org

0, 1, 0, 3, 0, 2, 5, 7, 0, 6, 9, 15, 0, 4, 10, 14, 17, 21, 27, 31, 0, 12, 18, 30, 33, 45, 51, 63, 0, 8, 20, 28, 34, 42, 54, 62, 65, 73, 85, 93, 99, 107, 119, 127, 0, 24, 36, 60, 66, 90, 102, 126, 129, 153, 165, 189, 195, 219, 231, 255
Offset: 1

Views

Author

Kival Ngaokrajang, Jul 19 2015

Keywords

Comments

The sequence of row lengths is A060546(n).
Column 2 is A164073. See illustration.

Examples

			The irregular triangle begins:
n\k 0  1  2  3  4  5  6  7 ...
1   0  1
2   0  3
3   0  2  5  7
4   0  6  9 15
5   0  4 10 14 17 21 27 31
6   0 12 18 30 33 45 51 63
...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Select[Range[0,2^k -1], #==IntegerReverse[#,2,k]&],{k,1,8}]] (* Ed Pegg Jr, May 03 2021 *)

A092434 Number of words X=x(1)x(2)x(3)...x(n) of length n in three digits {0,1,2} that are invariant under the mapping X -> Y, where y(i)=((AD)^(i-1))x(1) and where (AD) denotes the absolute difference (AD)x(i)=abs(x(i+1)-x(i)) (in other words, y(i) is the i-th element in the diagonal of leading entries in the table of absolute differences of {x(1), x(2),...,x(n)}).

Original entry on oeis.org

3, 4, 10, 12, 28, 32, 72, 80, 176, 192, 416, 448, 960, 1024
Offset: 1

Views

Author

John W. Layman, Mar 23 2004

Keywords

Comments

In the two digits {0,1} the corresponding sequence is 2,2,4,4,8,8,16,16,32,32,64,64,... which appears to be A060546.

Examples

			The table of absolute differences of {2,1,1,0} is
2
1.1
1.0.1
0.1.1.0
with the diagonal of leading absolute differences again forming the word (2110).
Thus (2110) is one of the twelve words in the digits {0,1,2} that are counted in calculating a(4).
		

Crossrefs

Cf. A060546.

Formula

It is conjectured that a(n)=(n+2)*2^((n-1) div 2).
Previous Showing 31-38 of 38 results.