cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A309961 Numbers k for which rank of the elliptic curve y^2 = x^3 - 432*k^2 is 1.

Original entry on oeis.org

6, 7, 9, 12, 13, 15, 17, 20, 22, 26, 28, 31, 33, 34, 35, 42, 43, 48, 49, 50, 51, 53, 56, 58, 61, 62, 63, 67, 68, 69, 70, 71, 72, 75, 78, 79, 84, 85, 87, 89, 90, 92, 94, 96, 97, 98, 103, 104, 105, 106, 107, 114, 115, 117, 120, 123, 130, 133, 134, 136, 139, 140, 141, 142, 143, 151
Offset: 1

Views

Author

Seiichi Manyama, Aug 25 2019

Keywords

Crossrefs

Subsequence of A159843.
Cf. A060748, A060838, A309960 (rank 0), A309962 (rank 2), A309963 (rank 3), A309964 (rank 4).

Programs

  • PARI
    for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, 0, -432*k^2]))[1]==1, print1(k", ")))
    
  • PARI
    is(n, f=factor(n))=my(c=prod(i=1, #f~, f[i, 1]^(f[i, 2]\3)), r=n/c^3, E=ellinit([0, 16*r^2]), eri=ellrankinit(E), mwr=ellrank(eri), ar); if(r<6 || mwr[1]==0, return(0)); if(mwr[2]>1, return(0)); ar=ellanalyticrank(E)[1]; if(ar==0, return(0)); for(effort=1, 99, mwr=ellrank(eri, effort); if(mwr[1]>1 || mwr[2]<1, return(0), mwr[1]==mwr[2] && mwr[1]==1, return(1))); error("unknown (",ar==1," on the BSD conjecture)") \\ Charles R Greathouse IV, Jan 24 2023

Formula

A060838(a(n)) = 1.

A309962 Numbers k for which rank of the elliptic curve y^2 = x^3 - 432*k^2 is 2.

Original entry on oeis.org

19, 30, 37, 65, 86, 91, 110, 124, 126, 127, 132, 152, 153, 163, 182, 183, 201, 203, 209, 210, 217, 218, 219, 240, 246, 254, 271, 273, 282, 296, 309, 335, 342, 345, 348, 370, 379, 390, 397, 399, 407, 420, 433, 435, 436, 446, 453, 462, 468, 469, 477, 497, 498, 506, 513, 520, 523, 554
Offset: 1

Views

Author

Seiichi Manyama, Aug 25 2019

Keywords

Crossrefs

Subsequence of A159843.
Cf. A060748, A060838, A309960 (rank 0), A309961 (rank 1), A309963 (rank 3), A309964 (rank 4).

Programs

  • PARI
    for(k=1, 1e3, if(ellanalyticrank(ellinit([0, 0, 0, 0, -432*k^2]))[1]==2, print1(k", ")))

Formula

A060838(a(n)) = 2.

A309963 Numbers k for which rank of the elliptic curve y^2 = x^3 - 432*k^2 is 3.

Original entry on oeis.org

657, 854, 1020, 1122, 1241, 1267, 1330, 1339, 1426, 1482, 1554, 1798, 1853, 1892, 2015, 2310, 2346, 2574, 2763, 2771, 2805, 2869, 2914, 2947, 2977, 3036, 3383, 3445, 3465, 3526, 3894, 3913, 4002, 4209, 4290, 4362, 4706, 4711, 4830, 4921, 4930, 4977, 5025, 5053, 5074, 5193, 5256
Offset: 1

Views

Author

Seiichi Manyama, Aug 25 2019

Keywords

Crossrefs

Subsequence of A159843.
Cf. A060748, A060838, A309960 (rank 0), A309961 (rank 1), A309962 (rank 2), A309964 (rank 4).

Programs

  • PARI
    for(k=1, 5e3, if(ellanalyticrank(ellinit([0, 0, 0, 0, -432*k^2]))[1]==3, print1(k", ")))

Formula

A060838(a(n)) = 3.

A309964 Numbers k for which rank of the elliptic curve y^2 = x^3 - 432*k^2 is 4.

Original entry on oeis.org

21691, 27937, 33193, 34706, 36667, 39331, 45353, 46299, 53265, 55298, 55335, 59295, 59690, 62628, 63147, 64001, 65683, 73963, 78604, 82290, 87653, 90489, 94681, 96139
Offset: 1

Views

Author

Seiichi Manyama, Aug 25 2019

Keywords

Crossrefs

Subsequence of A159843.
Cf. A060748, A060838, A309960 (rank 0), A309961 (rank 1), A309962 (rank 2), A309963 (rank 3).

Programs

  • PARI
    for(k=1, 5e4, if(ellanalyticrank(ellinit([0, 0, 0, 0, -432*k^2]))[1]==4, print1(k", ")))

Formula

A060838(a(n)) = 4.

Extensions

a(18)-a(24) from Maksym Voznyy, Jan 25 2023

A190356 Least positive x in the Diophantine equation x^3 + y^3 = n*z^3 (with x >= y and y != 0).

Original entry on oeis.org

1, 37, 2, 2, 89, 7, 683, 18, 3, 19, 25469, 3, 3, 163, 137, 1853, 631, 3, 4, 449, 7, 11, 23417, 730511, 1872, 28747, 5, 11, 4, 4, 5353, 2538163, 15409, 53, 197, 17351, 5563, 13, 433, 2570129, 13, 1176498611, 53, 1241, 4, 25903, 15642626656646177, 14, 5, 592, 4033, 165889, 90, 181, 9109, 5266097, 5, 184223499139, 5, 5, 7, 52954777
Offset: 1

Views

Author

Jean-François Alcover, May 11 2011

Keywords

Comments

This sequence a(k) is computed so that equation a(k)^3 + y^3 = A020898(k)*z^3 holds.
The 4 sequences A020898 [i.e., n], A190356 [i.e., x], A190580 [i.e., y] and A190581 [i.e., z] satisfy the equation A190356(n)^3 + A190580(n)^3 = A020898(n) * A190581(n)^3.
All x values above 25469 were obtained from Mishima's list and may not be the least positive solution.

Examples

			a(18) = 3 because A020898(18) = 35 and 3^3 + 2^3 = 35*1^3.
		

Crossrefs

Programs

  • Mathematica
    (* Let x = u + v and y = u - v *)
    f[n_, m_] := (r =  Reduce[u > 0 && v > 0 && Mod[2*u^3 + 6*u*v^2, n] == 0, {u, v},  Integers] ;
    uv={u,v}/.(ToRules/@ List@@ r[[All,-2;;-1]])/.C-> c;
    xy = (s = {};
    Do[sel =  Select[uv,  IntegerQ[((2*#1[[1]]^3 + 6*#1[[1]]*#1[[2]]^2)/n)^(1/ 3)] &];
    If[sel =!= {}, AppendTo[s, sel] ], {c[1], 0, m}, {c[2], 0,  m}];
    {#[[1]] + #[[2]], #[[1]] - #[[2]]} & /@ (s //
    Flatten[#, 1] &)) // Select[#, Total[#] != 0 &] &;
    nxyz =  xy /. {x_Integer, y_} -> {n, x, y, ((x^3 + y^3)/n)^(1/3)};
    nxyz /. ({, x, y_, z_} /; {x, y, z} != {0, 0, 0} &&
    GCD[x, y, z] != 1) :> (gd = GCD[x, y, z]; {n, x/gd, y/gd, z/gd})) // Union // Sort[#, #1[[2]] < #2[[2]] &] &;
    g[n_] := (m0 = 1; While[(r = f[n, m0]) == {}, m0 = 2 m0];
    r // First);
    A020898 = {2, 6, 7, 9, 12, 13, 15, 17, 19, 20, 22, 26, 28, 30, 31, 33, 34, 35, 37, 42, 43, 49, 50, 51, 53, 58, 61, 62, 63, 65, 67, 68, 69, 70, 71, 75, 78, 79, 84, 85, 86, 87, 89, 90, 91, 92, 94, 97, 98, 103, 105, 106, 107, 110, 114, 115, 117, 123, 124, 126, 127, 130}; km = Length[A020898]; (* xm(n) = some hard to compute values of x from Hisanori Mishima's list *) xm[22]=25469; xm[50]=23417; xm[51]=730511; xm[58]=28747; xm[68]=2538163; xm[69]=15409; xm[75]=17351; xm[85]=2570129; xm[87]=1176498611; xm[92]=25903; xm[94]=15642626656646177; xm[106]=165889; xm[114]=9109; xm[115]=5266097; xm[123]=184223499139; xm[130]=52954777; xm[n_] := xm[n] = g[n][[2]];
    A190356 = Table[ n = A020898[[k]]; Print[xm[n]]; xm[n], {k, 1, km}] (* Jean-François Alcover, Jan 03 2012 *)

Extensions

Positions corresponding to n=124 and n=127 (which were not minimal) corrected by Jean-François Alcover
Extended to 62 terms by Jean-François Alcover, Jan 03 2012

A190580 Value of y in the Diophantine equation x^3 + y^3 = n*z^3 (with x>0 and minimal and x >= y and y != 0).

Original entry on oeis.org

1, 17, -1, 1, 19, 2, 397, -1, -2, 1, 17299, -1, 1, 107, -65, 523, -359, 2, -3, -71, 1, -2, -11267, 62641, -1819, -14653, -4, 7, -1, 1, 1208, -472663, -10441, 17, -126, -11951, 53, -4, 323, -2404889, 5, -907929611, 36, -431, 3, -3547, -15616184186396177, -5, -3, -349, 3527, -140131, 17, -71, -901, -2741617, -2, 10183412861, -1, 1, -6, 33728183
Offset: 1

Views

Author

Jean-François Alcover, May 13 2011

Keywords

Comments

A190356(n)^3 + a(n)^3 = A020898(n)*z^3. Unknown z corresponds to sequence A190581.
The 4 sequences A020898 [i.e. n], A190356 [i.e. x], A190580 [i.e. y] and A190581 [i.e. z] satisfy the equation A190356^3 + A190580^3 = A020898 * A190581^3

Examples

			a(18) = 2  because  A020898(18) = 35 and 3^3 + 2^3 = 35*1^3.
		

Crossrefs

Programs

A190581 Value of z in the Diophantine equation x^3 + y^3 = n*z^3 (with x>0 and minimal and x >= y and y != 0).

Original entry on oeis.org

1, 21, 1, 1, 39, 3, 294, 7, 1, 7, 9954, 1, 1, 57, 42, 582, 182, 1, 1, 129, 2, 3, 6111, 197028, 217, 7083, 1, 3, 1, 1, 1323, 620505, 3318, 13, 43, 3606, 1302, 3, 111, 330498, 3, 216266610, 13, 273, 1, 5733, 590736058375050, 3, 1, 117, 1014, 25767, 19, 37, 1878, 1029364, 1, 37045412880, 1, 1, 1, 11285694
Offset: 1

Views

Author

Jean-François Alcover, May 13 2011

Keywords

Comments

A190356(n)^3 + y^3 = A020898(n)*a(n)^3. Unknown y corresponds to sequence A190580.
The 4 sequences A020898 [i.e. n], A190356 [i.e. x], A190580 [i.e. y] and A190581 [i.e. z] satisfy the equation A190356(n)^3 + A190580(n)^3 = A020898(n) * A190581(n)^3

Examples

			a(18) = 1  because  A020898(18) = 35 and 3^3 + 2^3 = 35*1^3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := z /. ToRules[ Reduce[ z > 0 && A190356[[n]]^3 + A190580[[n]]^3 == A020898[[n]]*z^3, z, Integers]]; Table[a[n] , {n, 1, 62}]

A228499 Sums of two rational cubes, excluding cubes and twice cubes.

Original entry on oeis.org

6, 7, 9, 12, 13, 15, 17, 19, 20, 22, 26, 28, 30, 31, 33, 34, 35, 37, 42, 43, 48, 49, 50, 51, 53, 56, 58, 61, 62, 63, 65, 67, 68, 69, 70, 71, 72, 75, 78, 79, 84, 85, 86, 87, 89, 90, 91, 92, 94, 96, 97, 98, 103, 104, 105, 106, 107, 110, 114, 115, 117, 120, 123, 124
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 23 2013

Keywords

Comments

Each term can be written as sum of two rational cubes infinitely many times.
These are all the integers A>0 such that the rank of the elliptic curve x^3 + y^3 = A is positive (A060838(A)>0). - Michael Somos, Feb 29 2020

References

  • Wacław Sierpiński, Teoria liczb, cz. II, PWN, Warsaw, 1959, pp. 472-473.

Crossrefs

Subsequence of A020897, and hence of A159843.

Programs

  • PARI
    for(n=1, 124, if(ellanalyticrank(ellinit([0, (4*n)^2]))[1]>0, print1(n, ", ")));

A230564 Rational rank of the n-th taxicab elliptic curve x^3 + y^3 = A011541(n).

Original entry on oeis.org

0, 2, 4, 5, 4
Offset: 1

Views

Author

Jonathan Sondow, Oct 25 2013

Keywords

Comments

Guy, 2004: "Andrew Bremner has computed the rational rank of the elliptic curve x^3 + y^3 = Taxicab(n) as equal to 2, 4, 5, 4 for n = 2, 3, 4, 5, respectively."
Abhinav Kumar computed that a(1) = 0 (see the MathOverflow link for details). But Euler and Legendre scooped him (see the next comment).
Noam D. Elkies: "... the fact that x^3+y^3=2 has no [rational] solutions other than x=y=1 is attributed by Dickson to Euler himself: see Dickson's History of the Theory of Numbers (1920) Vol.II, Chapter XXI "Numbers the Sum of Two Rational Cubes", page 572. The reference (footnote 182) is "Algebra, 2, 170, Art. 247; French transl., 2, 1774, pp. 355-60; Opera Omnia, (1), I, 491". In the next page Dickson also refers to work of Legendre that includes this result (footnote 184: "Théorie des nombres, Paris, 1798, 409; ...")." See the MathOverflow link for further comments from Elkies.

Examples

			rank(x^3 + y^3 = 2) = 0.
rank(x^3 + y^3 = 1729) = 2.
rank(x^3 + y^3 = 87539319) = 4.
rank(x^3 + y^3 = 6963472309248) = 5.
rank(x^3 + y^3 = 48988659276962496) = 4.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, D1.

Crossrefs

Formula

a(n) = A060838(A011541(n)).

A359687 Numbers k for which rank of the elliptic curve y^2 = x^3 - 432*k^2 is 5.

Original entry on oeis.org

489489, 525698, 526535, 763002, 903210, 1423214
Offset: 1

Views

Author

Maksym Voznyy and Charles R Greathouse IV, Jan 25 2023

Keywords

Crossrefs

Subsequence of A159843.
Cf. A060748, A060838, A309960 (rank 0), A309961 (rank 1), A309962 (rank 2), A309963 (rank 3), A309964 (rank 4).

Programs

  • PARI
    is(n)=my(c=prod(i=1, #f~, f[i, 1]^(f[i, 2]\3)), r=n/c^3, E=ellinit([0, 16*r^2]), eri=ellrankinit(E), mwr=ellrank(eri), ar); if(r<489489, return(0)); if(mwr[1]>5 || mwr[2]<5, return(0)); ar=ellanalyticrank(E)[1]; if(ar<2, return(0)); for(effort=1, 99, mwr=ellrank(eri, effort); if(mwr[1]>5 || mwr[2]<5, return(0), mwr[1]==5 && mwr[2]==5, return(1))); Str("unknown; ",ar==5," under BSD conjecture") \\ Charles R Greathouse IV, Jan 25 2023

Formula

A060838(a(n)) = 5.
Previous Showing 11-20 of 20 results.