cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A245367 Compositions of n into parts 3, 5 and 7.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 2, 1, 3, 3, 3, 6, 5, 8, 10, 11, 17, 18, 25, 32, 37, 52, 61, 79, 102, 123, 163, 200, 254, 326, 402, 519, 649, 819, 1045, 1305, 1664, 2096, 2643, 3358, 4220, 5352, 6759, 8527, 10806, 13622, 17237, 21785, 27501, 34802, 43934, 55544, 70209, 88672, 112131, 141644, 179018, 226274, 285860, 361358
Offset: 0

Views

Author

David Neil McGrath, Aug 20 2014

Keywords

Examples

			a(16) = 10: the compositions are the permutations of [5533] (there are 4!/2!2!=6 of them) and the permutations of [7333] (there are 4!/3!=4).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,1,0,1,0,1},{1,0,0,1,0,1,1},70] (* Harvey P. Dale, Jan 27 2017 *)
  • PARI
    Vec(1/(1-x^3-x^5-x^7) +O(x^66)) \\ Joerg Arndt, Aug 20 2014

Formula

G.f: 1/(1-x^3-x^5-x^7).
a(n) = a(n-3) + a(n-5) + a(n-7).

A347493 a(0) = 1, a(1) = 0, a(2) = a(3) = 1; thereafter, a(n) = a(n-1) + a(n-2) + a(n-4).

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 8, 13, 24, 41, 73, 127, 224, 392, 689, 1208, 2121, 3721, 6531, 11460, 20112, 35293, 61936, 108689, 190737, 334719, 587392, 1030800, 1808929, 3174448, 5570769, 9776017, 17155715, 30106180, 52832664, 92714861, 162703240, 285524281, 501060185, 879299327, 1543062752
Offset: 0

Views

Author

Greg Dresden and Yichen P. Wang, Sep 03 2021

Keywords

Comments

a(n) is also the number of ways to tile a strip of length n with squares, dominoes, and tetrominoes such that the first tile is NOT a square. As such, it completes the set of such tilings with A005251 (first tile is NOT a domino), A005314 (first tile is NOT a tetromino), and A060945 (no restrictions on first tile).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - x - x^2 - x^4), {x, 0, 40}], x] (* Michael De Vlieger, Mar 04 2022 *)
    LinearRecurrence[{1,1,0,1},{1,0,1,1},60] (* Harvey P. Dale, Aug 17 2023 *)

Formula

a(n) = 2*A060945(n) - A005251(n) - A005314(n).
G.f.: (1 - x)/(1 - x - x^2 - x^4).
Sum_{k=0..n} a(k)*F(n-k) = a(n+3) - F(n+2) for F(n)=A000045(n) the Fibonacci numbers.
5*a(n) = 2*(-1)^n + 3*A005314(n+1) -4*A005314(n) +2*A005314(n-1). - R. J. Mathar, Sep 30 2021

A306489 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of 1/(1 - Sum_{d|k} x^d).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 5, 1, 1, 1, 1, 3, 3, 8, 1, 1, 1, 2, 1, 6, 4, 13, 1, 1, 1, 1, 4, 1, 10, 6, 21, 1, 1, 1, 2, 1, 7, 2, 18, 9, 34, 1, 1, 1, 1, 3, 1, 13, 3, 31, 13, 55, 1, 1, 1, 2, 2, 6, 1, 25, 4, 55, 19, 89, 1, 1, 1, 1, 3, 3, 10, 1, 46, 5, 96, 28, 144, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 19 2019

Keywords

Comments

A(n,k) is the number of compositions (ordered partitions) of n into divisors of k.

Examples

			Square array begins:
  1,  1,  1,   1,  1,   1,  ...
  1,  1,  1,   1,  1,   1,  ...
  1,  2,  1,   2,  1,   2,  ...
  1,  3,  2,   3,  1,   4,  ...
  1,  5,  3,   6,  1,   7,  ...
  1,  8,  4,  10,  2,  13,  ...
		

Crossrefs

Columns k=1..7 give A000012, A000045 (for n > 0), A000930, A060945, A003520, A079958, A005709.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 - Sum[x^d, {d, Divisors[k]}]), {x, 0, n}]][i - n + 1], {i, 0, 12}, {n, 0, i}] // Flatten

Formula

G.f. of column k: 1/(1 - Sum_{d|k} x^d).
Previous Showing 11-13 of 13 results.