cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A081717 Primes prime(j) such that prime(j) + j is composite.

Original entry on oeis.org

5, 11, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 67, 71, 73, 83, 97, 103, 107, 109, 113, 127, 137, 149, 151, 157, 163, 167, 173, 179, 191, 193, 197, 199, 211, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 331, 337, 347
Offset: 1

Views

Author

Labos Elemer, Apr 02 2003

Keywords

Examples

			127 is the 31st prime and 127+31 = 158 is composite.
		

Crossrefs

Programs

  • Mathematica
    Do[s=Prime[n]+n; If[ !PrimeQ[s], Print[Prime[n]]], {n, 1, 100}]

A253971 Prime(n) is included iff prime(n) + n^2 is also prime.

Original entry on oeis.org

2, 3, 7, 19, 37, 43, 79, 113, 151, 163, 193, 229, 251, 281, 317, 373, 397, 433, 463, 503, 577, 757, 827, 911, 953, 997, 1069, 1123, 1321, 1399, 1423, 1481, 1657, 1693, 1747, 2029, 2143, 2267, 2311, 2473, 2503, 2551, 2593, 2687, 2753, 2791, 2917, 3313, 3323
Offset: 1

Views

Author

Vincenzo Librandi, Feb 04 2015

Keywords

Examples

			7 is in this sequence because 7+16=23.
19 is in this sequence because 19+64=83.
		

Crossrefs

Programs

  • Magma
    [NthPrime(n): n in [1..500] | IsPrime(NthPrime(n)+n^2)];
    
  • Mathematica
    Prime[Select[Range[500], PrimeQ[Prime[#] + #^2] &]]
  • PARI
    lista(nn) = forprime (n=2, nn, if (isprime(n+primepi(n)^2), print1(n, ", "))); \\ Michel Marcus, Feb 04 2015

Formula

a(n) = prime(A064711(n)). - Michel Marcus, Feb 04 2015

A254867 Numbers n such that prime(n) + n and prime(n) + n^2 are prime.

Original entry on oeis.org

1, 2, 4, 22, 66, 96, 106, 144, 180, 222, 324, 378, 466, 492, 604, 742, 760, 778, 784, 960, 984, 990, 994, 1050, 1150, 1162, 1186, 1248, 1302, 1308, 1356, 1360, 1380, 1744, 1830, 1866, 1870, 1956, 2052, 2070, 2112, 2182, 2212, 2380, 2470, 2556, 2586, 2638, 2676, 2760, 2766
Offset: 1

Views

Author

Zak Seidov, Feb 09 2015

Keywords

Examples

			a(4) = 22 = A064402(6): prime(22) = 79, 79 + {22, 22^2} = {101, 563} both prime.
		

Crossrefs

Subsequence of A064402. Cf. A000040, A014688, A061067, A061068.

Programs

  • Maple
    A254867:=n->`if`(isprime(ithprime(n)+n) and isprime(ithprime(n)+n^2), n, NULL): seq(A254867(n), n=1..10^4); # Wesley Ivan Hurt, Jan 16 2017
  • Mathematica
    Select[Range[1000], PrimeQ[Prime[#] + #] && PrimeQ[Prime[#] + #^2] &] (* Alonso del Arte, Feb 09 2015 *)
    Select[Range[3000],AllTrue[Prime[#]+{#,#^2},PrimeQ]&] (* Harvey P. Dale, Jan 17 2023 *)

A084294 Number of primes in the interval [prime(n),n+prime(n)].

Original entry on oeis.org

2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 4, 4, 3, 4, 4, 5, 5, 5, 5, 4, 5, 5, 7, 6, 6, 5, 5, 5, 5, 7, 7, 7, 7, 8, 7, 8, 9, 8, 8, 7, 7, 9, 8, 9, 8, 9, 11, 10, 10, 11, 10, 10, 9, 10, 11, 10, 9, 9, 9, 8, 10, 11, 11, 10, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 14, 15, 14, 13
Offset: 1

Views

Author

Labos Elemer, May 27 2003

Keywords

Crossrefs

Programs

  • Mathematica
    t[x_] := Table[w, {w, Prime[x], x+Prime[x]}] Table[Count[PrimeQ[t[n]], True], {n, 1, 128}] (* or *) Table[PrimePi[n+Prime[n]]-n+1, {n, 1, 25}];
  • PARI
    a(n) = primepi(n+prime(n)) - n + 1; \\ Michel Marcus, Aug 28 2019

Formula

a(n) = Pi(n+prime(n)) - n + 1 = A000720(n+A000040(n)) - n + 1. [corrected by Michel Marcus, Aug 28 2019]
Previous Showing 11-14 of 14 results.