cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A212058 Number of (w,x,y,z) with all terms in {1,...,n} and w>=x*y*z.

Original entry on oeis.org

0, 1, 5, 12, 25, 41, 66, 94, 132, 176, 229, 285, 359, 436, 522, 617, 727, 840, 971, 1105, 1257, 1418, 1588, 1761, 1964, 2173, 2391, 2619, 2865, 3114, 3390, 3669, 3969, 4278, 4596, 4923, 5286, 5652, 6027, 6411, 6825, 7242, 7686, 8133, 8598
Offset: 0

Views

Author

Clark Kimberling, Apr 30 2012

Keywords

Comments

a(n)+A212057(n)=n^4. For a guide to related sequences, see A211795.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w >= x*y*z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 50]] (* A212058 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

Formula

a(n) = Sum_{i=1..n+1} Sum_{j=1..n+1} tau(i)*floor((n+1-j)/i). - Ridouane Oudra, Oct 03 2020

A226600 Number of ordered triples (i,j,k) with i*j*k <= n and i,j,k >= 0.

Original entry on oeis.org

1, 8, 23, 44, 74, 107, 152, 197, 255, 315, 384, 453, 543, 624, 717, 816, 927, 1032, 1158, 1275, 1413, 1548, 1689, 1830, 2004, 2160, 2325, 2497, 2683, 2860, 3067, 3256, 3469, 3676, 3889, 4108, 4360, 4585, 4822, 5065, 5335, 5584, 5863, 6124, 6406, 6694, 6979
Offset: 0

Views

Author

Robert Price, Jun 13 2013

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k <= n, {i, j, k}], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]

Formula

a(n) = A003215(n) + A061201(n). - Alois P. Heinz, Jun 13 2013

A077593 Table by antidiagonals where T(n,k) = Sum_{i=1..n} T(floor(n/i),k-1) starting with T(n,0)=1 if n>0 and T(0,0)=0.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 5, 4, 1, 0, 1, 5, 7, 8, 5, 1, 0, 1, 6, 9, 13, 10, 6, 1, 0, 1, 7, 11, 19, 16, 14, 7, 1, 0, 1, 8, 13, 26, 23, 25, 16, 8, 1, 0, 1, 9, 15, 34, 31, 39, 28, 20, 9, 1, 0, 1, 10, 17, 43, 40, 56, 43, 38, 23, 10, 1, 0, 1, 11, 19, 53, 50, 76, 61, 63
Offset: 0

Views

Author

Henry Bottomley, Nov 08 2002

Keywords

Examples

			Rows start:
 0,0,0,0,0,0...;
 1,1,1,1,1,1...;
 1,2,3,4,5,6...;
 1,3,5,7,9,11...;
 1,4,8,13,19,26,...;
 ...
		

Crossrefs

Rows include (with offsets) A000004, A000012, A000027, A005408, A034856, A052905.
Cf. A077593.

Formula

T(n, k) = T(n-1, k) + A077592(n, k). Writing m as Sum_{i} p_i^e_i, T(n, k) = Sum_{m=1..n} Product_{i} C(k+e_i-1, e_i).

A175596 Partial products of A007425.

Original entry on oeis.org

1, 3, 9, 54, 162, 1458, 4374, 43740, 262440, 2361960, 7085880, 127545840, 382637520, 3443737680, 30993639120, 464904586800, 1394713760400, 25104847687200, 75314543061600, 1355661775108800, 12200955975979200, 109808603783812800, 329425811351438400, 9882774340543152000, 59296646043258912000, 533669814389330208000, 5336698143893302080000, 96060566590079437440000, 288181699770238312320000, 7780905893796434432640000
Offset: 1

Views

Author

Jonathan Vos Post, Dec 03 2010

Keywords

Comments

Partial products of the number of ordered factorizations of n as a product of 3 terms.
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = d_4(gcd(i,j)) for 1 <= i,j <= n, where d_4(n) = A007426(n). - Enrique Pérez Herrero, Jan 20 2013

Examples

			a(8) = 1 * 3 * 3 * 6 * 3 * 9 * 3 * 10 = 43740 = 2^2 * 3^7 * 5.
		

Crossrefs

Cf. A000005, A007425, A007426, A061201 (partial sums), A127270, A143354.
Cf. A066843.

Programs

  • Mathematica
    Table[Product[Sum[DivisorSigma[0, d], {d, Divisors[k]}], {k, 1, n}], {n, 1, 30}] (* Vaclav Kotesovec, Sep 03 2018 *)
  • PARI
    f(n) = sumdiv(n, k, numdiv(k)); \\ A007425
    a(n) = prod(k=1, n, f(k)); \\ Michel Marcus, Mar 23 2021

Formula

a(n) = Product_{i=1..n} A007425(i).
a(n) = Product_{prime p<=n} Product_{k=1..floor(log_p(n))} (1 + 2/k)^floor(n/p^k). - Ridouane Oudra, Mar 23 2021

A318750 a(n) = Sum_{k=1..n} k * tau_3(k), where tau_3 is A007425.

Original entry on oeis.org

1, 7, 16, 40, 55, 109, 130, 210, 264, 354, 387, 603, 642, 768, 903, 1143, 1194, 1518, 1575, 1935, 2124, 2322, 2391, 3111, 3261, 3495, 3765, 4269, 4356, 5166, 5259, 5931, 6228, 6534, 6849, 8145, 8256, 8598, 8949, 10149, 10272, 11406, 11535, 12327, 13137, 13551
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[n*Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, 100}]]
    (* Asymptotics: *) n^2 * (Log[n]^2 + (6*EulerGamma - 1)*Log[n] + 6*EulerGamma^2 - 3*EulerGamma - 6*StieltjesGamma[1] + 1/2) / 4 (* Vaclav Kotesovec, Sep 09 2018 *)
  • PARI
    tau_3(k) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(k)[, 2]));
    a(n) = sum(k = 1, n,  k * tau_3(k)); \\ Amiram Eldar, Jan 18 2025

Formula

a(n) = Sum_{k=1..n} A034718(k).
a(n) ~ n^2 * (log(n)^2 + (6*g-1)*log(n) + 6*g^2 - 3*g - 6*g1 + 1/2) / 4, where g is the Euler-Mascheroni constant A001620 and g1 is the first Stieltjes constant A082633. - Vaclav Kotesovec, Sep 09 2018

A379357 Numerators of the partial sums of the reciprocals of the 3rd Piltz function d_3(n) (A007425).

Original entry on oeis.org

1, 4, 5, 11, 13, 41, 47, 122, 259, 269, 299, 152, 167, 172, 59, 4, 13, 79, 85, 43, 44, 5, 16, 161, 83, 254, 517, 29, 92, 833, 878, 6191, 6296, 6401, 6506, 26129, 27389, 27809, 28229, 5671, 5923, 5951, 6203, 6245, 6287, 6371, 6623, 33199, 33829, 34039, 34459, 34669
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Examples

			Fractions begin with 1, 4/3, 5/3, 11/6, 13/6, 41/18, 47/18, 122/45, 259/90, 269/90, 299/90, 152/45, ...
		

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 12-13, Theorem 1.2.
  • József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 59.

Crossrefs

Cf. A007425, A061201, A104528, A379358 (denominators).

Programs

  • Mathematica
    f[p_, e_] := (e+1)*(e+2)/2; d3[1] = 1; d3[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/d3[n], {n, 1, 100}]]]
  • PARI
    d3(n) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / d3(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A007425(k)).
a(n)/A379358(n) = Sum_{i=1..N} b_i * n / log(n)^(i-1/3) + O(n / log(n)^(N+1-1/3)), for any fixed N >= 1, where b_i are constants. The same formula holds (with different constants) for any Piltz function d_k(n), for k >= 2, when 1/3 is replaced by 1/k.

A379358 Denominators of the partial sums of the reciprocals of the 3rd Piltz function d_3(n) (A007425).

Original entry on oeis.org

1, 3, 3, 6, 6, 18, 18, 45, 90, 90, 90, 45, 45, 45, 15, 1, 3, 18, 18, 9, 9, 1, 3, 30, 15, 45, 90, 5, 15, 135, 135, 945, 945, 945, 945, 3780, 3780, 3780, 3780, 756, 756, 756, 756, 756, 756, 756, 756, 3780, 3780, 3780, 3780, 3780, 3780, 756, 756, 3780, 3780, 3780
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 12-13, Theorem 1.2.
  • József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 59.

Crossrefs

Cf. A007425, A061201, A104529, A379357 (numerators).

Programs

  • Mathematica
    f[p_, e_] := (e+1)*(e+2)/2; d3[1] = 1; d3[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/d3[n], {n, 1, 100}]]]
  • PARI
    d3(n) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / d3(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A007425(k)).

A134700 Triangle read by rows: A000012 * A051731^2.

Original entry on oeis.org

1, 3, 1, 5, 1, 1, 8, 3, 1, 1, 10, 3, 1, 1, 1, 14, 5, 3, 1, 1, 1, 16, 5, 3, 1, 1, 1, 1, 20, 8, 3, 3, 1, 1, 1, 1, 23, 8, 5, 3, 1, 1, 1, 1, 1, 27, 10, 5, 3, 3, 1, 1, 1, 1, 1, 29, 10, 5, 3, 3, 1, 1, 1, 1, 1, 1, 35, 14, 8, 5, 3, 3, 1, 1, 1, 1, 1, 1, 37, 14, 8, 5, 3, 3, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 07 2007

Keywords

Comments

Left column = A006218.
Row sums = A061201: (1, 4, 7, 13, 16, 25, 28, ...).

Examples

			First few rows of the triangle:
   1;
   3, 1;
   5, 1, 1;
   8, 3, 1, 1;
  10, 3, 1, 1, 1;
  14, 5, 3, 1, 1, 1;
  16, 5, 3, 1, 1, 1, 1;
  20, 8, 3, 3, 1, 1, 1, 1;
  23, 8, 5, 3, 1, 1, 1, 1, 1;
  ...
		

Crossrefs

Programs

  • PARI
    row(n) = my(m=matrix(n,n,i,j,!(i%j))); vector(n, k, sum(i=1, n, (m^2)[i, k])); \\ Michel Marcus, Apr 30 2025

Formula

Extensions

a(45) = 1, a(46) = 27 corrected and more terms from Georg Fischer, Jun 05 2023
More terms from Michel Marcus, Apr 30 2025

A140703 A000012 * A051731^3.

Original entry on oeis.org

1, 4, 1, 7, 1, 1, 13, 4, 1, 1, 16, 4, 1, 1, 1, 25, 7, 4, 1, 1, 1, 28, 7, 4, 1, 1, 1, 1, 38, 13, 4, 4, 1, 1, 1, 1, 44, 13, 7, 4, 1, 1, 1, 1, 1, 53, 16, 7, 4, 4, 1, 1, 1, 1, 1, 56, 16, 7, 4, 4, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, May 24 2008

Keywords

Comments

Row sums = A061202: (1, 5, 9, 19, 23, 39,...).
Leftmost column = A061201: (1, 4, 7, 13, 16, 25, 28,...).

Examples

			First few rows of the triangle are:
1;
4, 1;
7, 1, 1;
13, 4, 1, 1;
16, 4, 1, 1, 1;
25, 7, 4, 1, 1, 1;
28, 7, 4, 1, 1, 1, 1;
38, 13, 4, 4, 1, 1, 1, 1;
...
		

Crossrefs

Formula

A000012 * A051731^3 as infinite lower triangular matrices, where A000012 = [1; 1,1; 1,1,1;...] and A051731 = the inverse Mobius transform.

A319088 a(n) = Sum_{k=1..n} k^2*tau_3(k), where tau_3 is A007425.

Original entry on oeis.org

1, 13, 40, 136, 211, 535, 682, 1322, 1808, 2708, 3071, 5663, 6170, 7934, 9959, 13799, 14666, 20498, 21581, 28781, 32750, 37106, 38693, 55973, 59723, 65807, 73097, 87209, 89732, 114032, 116915, 138419, 148220, 158624, 169649, 216305, 220412, 233408, 247097
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; Accumulate[Table[k^2*Sum[DivisorSigma[0, d], {d, Divisors[k]}], {k, 1, nmax}]]
  • PARI
    tau_3(k) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(k)[, 2]));
    a(n) = sum(k = 1, n,  k^2 * tau_3(k)); \\ Amiram Eldar, Jan 18 2025

Formula

a(n) ~ n^3 * (log(n)^2/6 + (gamma - 1/9)*log(n) + gamma^2 - gamma/3 - g1 + 1/27), where gamma is the Euler-Mascheroni constant A001620 and g1 is the first Stieltjes constant A082633.
Previous Showing 11-20 of 22 results. Next