cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A361761 a(n) = Product_{i=prime(n)..prime(n+1)} i.

Original entry on oeis.org

6, 60, 210, 55440, 1716, 742560, 5814, 4037880, 7866331200, 26970, 51889178880, 89927760, 74046, 184072680, 776881123200, 1719393207840, 215940, 4383026968320, 1562389080, 373176, 14609718723600, 3484127520, 34726953602880, 518607878946393600, 9505049400, 1061106
Offset: 1

Views

Author

Karl-Heinz Hofmann, Mar 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(x=1); for(i=prime(n), prime(n+1), x*=i); x; \\ Michel Marcus, Mar 28 2023
  • Python
    from sympy import prod, sieve
    def A361761(n): return prod(range(sieve[n],sieve[n+1]+1))
    

Formula

a(n) = A006094(n)*A061214(n).

A109919 a(1) = 1, then product of consecutive composite numbers sandwiched between primes.

Original entry on oeis.org

1, 2, 1, 3, 4, 5, 6, 7, 720, 11, 12, 13, 3360, 17, 18, 19, 9240, 23, 11793600, 29, 30, 31, 45239040, 37, 59280, 41, 42, 43, 91080, 47, 311875200, 53, 549853920, 59, 60, 61, 1072431360, 67, 328440, 71, 72, 73, 2533330800, 79, 531360, 83, 4701090240, 89
Offset: 1

Views

Author

Amarnath Murthy, Jul 16 2005

Keywords

Comments

a(1) = a(3) = 1 as empty product is defined to be 1.
The odd numbered terms are in A061214. - T. D. Noe, Oct 02 2012

Crossrefs

Cf. A109920.
Cf. A072472.
Cf. A061214 (product of composite numbers between primes).

Programs

  • Maple
    A109919 := proc(n) local p; if n mod 2 = 0 then ithprime(n/2) ; elif n = 1 then 1 ; else p := ithprime((n-1)/2) ; mul(i,i=p+1..nextprime(p)-1) ; fi ; end: for n from 1 to 80 do printf("%d, ",A109919(n)) ; od ; # R. J. Mathar, May 02 2007

Formula

a(2n) = prime(n) and a(2n+1)= product of composite numbers between prime(n) and prime(n+1).
a(2n) = A000040(n). a(2n+1) = A072472(n)/A000040(n+1). - R. J. Mathar, May 02 2007

Extensions

More terms from R. J. Mathar, May 02 2007

A276133 Exponent of highest power of 2 dividing the product of the composite numbers between the n-th prime and the (n+1)-st prime.

Original entry on oeis.org

0, 2, 1, 4, 2, 5, 1, 3, 6, 1, 8, 4, 1, 3, 7, 5, 2, 8, 3, 3, 4, 5, 6, 9, 3, 1, 4, 2, 5, 11, 8, 6, 1, 10, 1, 6, 7, 3, 6, 6, 2, 8, 6, 3, 1, 12, 10, 6, 2, 4, 4, 4, 8, 11, 4, 6, 1, 7, 4, 1, 11, 13, 3, 3, 3, 15, 7, 8, 2, 6, 4, 7, 7, 5, 3, 10, 7, 5, 7
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 29 2016

Keywords

Crossrefs

Supersequence of A205649 (Hamming distance between twin primes).
First differences of A080085.

Programs

  • Maple
    A:= Vector(100): q:= 2:
    for n from 1 to 100 do
      p:= q; q:= nextprime(q);
      t:= 0;
      for i from p+1 to q-1 do t:= t + padic:-ordp(i,2) od;
      A[n]:= t
    od:
    convert(A,list); # Robert Israel, Apr 11 2021
  • Mathematica
    IntegerExponent[#,2]&/@(Times@@Range[#[[1]]+1,#[[2]]-1]&/@Partition[ Prime[ Range[ 80]],2,1]) (* Harvey P. Dale, Aug 12 2024 *)
  • PARI
    a(n) = valuation(prod(k=prime(n)+1, prime(n+1)-1, k), 2); \\ Michel Marcus, Aug 31 2016
    
  • PARI
    a(n) = my(p=prime(n+1),q=prime(n)); p-hammingweight(p) - (q-hammingweight(q)); \\ Kevin Ryde, Apr 11 2021
    
  • Python
    from sympy import prime
    def A276133(n): return (p:=prime(n+1)-1)-p.bit_count()-(q:=prime(n))+q.bit_count() # Chai Wah Wu, Jul 10 2022

Formula

a(n) = A007814(A061214(n)).
a(n+1) = Sum_{k = A000040(n+1)..A000040(n+2)} A007814(k).

Extensions

a(16) corrected by Robert Israel, Apr 11 2021

A061216 a(n) = product of all even numbers between n-th prime and (n+1)-st prime.

Original entry on oeis.org

1, 4, 6, 80, 12, 224, 18, 440, 17472, 30, 39168, 1520, 42, 2024, 124800, 175392, 60, 261888, 4760, 72, 438672, 6560, 635712, 74718720, 9800, 102, 11024, 108, 12320, 356925975275520, 16640, 2405568, 138, 61857653760, 150, 3651648, 4095360
Offset: 1

Views

Author

Amarnath Murthy, Apr 22 2001

Keywords

Comments

Previous name used "even composite numbers", but if an even number is strictly between two primes, it is composite. So the word 'composite' isn't needed in the title. - David A. Corneth, Aug 21 2016

Examples

			a(4) = 80 = 8 * 10, as 7 is the 4th prime and 11 is the 5th prime.
a(9) = 17472. Let p_(n) = prime(n). p_(9) = 23, p_(10) = 29. The number of even numbers between 23 and 29 is floor((29 - 23) / 2) = 3. So a(9) is 2^3 * (23 + 1)/2 * ... * (29 - 1)/2 = 17472. - _David A. Corneth_, Aug 21 2016
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local p,q;
      p:= ithprime(n); q:= ithprime(n+1);
      2^((q-p)/2)*floor(q/2)!/floor(p/2)!
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Aug 28 2016
  • Mathematica
    f[n_]:=Module[{pn=Prime[n],pn1=Prime[n+1]},Times@@Range[pn+1,pn1,2]]; Table[f[i], {i, 45}] (* Harvey P. Dale, Jan 16 2011 *)
  • PARI
    for(n=1,50,p=1;for(k=prime(n)+1, prime(n+1)-1,if(k%2==0,p=p*k));print1(p","))
    
  • PARI
    n=0; q=2; forprime (p=3, prime(2001), a=1; for (i=q + 1, p - 1, if (i%2==0, a*=i)); q=p; write("b061216.txt", n++, " ", a) ) \\ Harry J. Smith, Jul 19 2009
    
  • PARI
    a(n) = {my(p1 = prime(n), p2 = nextprime(p1 + 1));
    2^((p2-p1)\2) * prod(i=(p1+1)\2,(p2-1)\2,i)} \\ David A. Corneth, Aug 21 2016

Formula

a(n) = 2^((prime(n+1)-prime(n))/2) * ((prime(n+1)-1)/2)!/((prime(n)-1)/2)! for n >= 2. - Robert Israel, Aug 28 2016

Extensions

Corrected and extended by Ralf Stephan, Mar 22 2003
Name simplified by David A. Corneth, Aug 21 2016

A077217 Prime(k) such that the prime power with largest exponent that divides the product P(k) of composite numbers between prime(k) and prime(k+1) is an odd number, i.e., if p^r and 2^s divide P(k) then r >= s, p is an odd prime.

Original entry on oeis.org

2, 5, 17, 29, 41, 101, 107, 137, 149, 179, 197, 269, 281, 457, 461, 499, 521, 569, 593, 617, 641, 673, 727, 809, 821, 827, 857, 881, 1049, 1061, 1229, 1277, 1289, 1301, 1321, 1451, 1453, 1481, 1483, 1619, 1697, 1721, 1753, 1777, 1861, 1873, 1877, 1949, 1997, 2027
Offset: 1

Views

Author

Amarnath Murthy, Nov 02 2002

Keywords

Comments

In most cases a power of 2 has a larger exponent than any odd prime power.
Primes p = prime(k) such that A051903(A000265(A061214(k))) >= A007814(A061214(k)). - Amiram Eldar, Apr 01 2021

Examples

			5 is a member as 6 is divisible by 3^1 as well as by 2^1.
17 is a member as 18 is divisible by 3^2 but not by 2^2.
		

Crossrefs

Programs

  • Mathematica
    q[p_] := Module[{prod = Product[k, {k, p + 1, NextPrime[p] - 1}], e2}, e2 = IntegerExponent[prod, 2]; Max[FactorInteger[prod/2^e2][[;; , 2]]] >= e2]; Select[Range[2000], PrimeQ[#] && q[#] &] (* Amiram Eldar, Apr 01 2021 *)
  • PARI
    f(p) = prod(k=p+1, nextprime(p+1)-1, k);\\ A061214
    isok(p) = {my(prd = f(p), e = valuation(prd, 2), ofprd = prd/2^e); if (prd > 1, (ofprd == 1) || (e <= vecmax(factor(ofprd)[,2])));} \\ Michel Marcus, Apr 01 2021

Extensions

Wrong term removed and more terms added by Amiram Eldar, Apr 01 2021

A361806 Sum of distinct prime factors of all composite numbers between n-th and (n+1)st primes.

Original entry on oeis.org

0, 2, 5, 10, 5, 17, 5, 28, 30, 10, 45, 42, 12, 44, 47, 76, 10, 72, 57, 5, 97, 51, 117, 150, 28, 22, 83, 5, 65, 321, 66, 131, 28, 298, 10, 108, 172, 145, 109, 205, 10, 276, 5, 127, 16, 441, 582, 130, 24, 80, 232, 10, 276, 195, 270, 256, 10, 218, 187, 52, 388, 701, 162
Offset: 1

Views

Author

Karl-Heinz Hofmann, Mar 26 2023

Keywords

Examples

			a(6): 6th prime = 13 and the (6+1)th prime = 17; the composites between are {14,15,16} and the distinct prime factors of this set are {2,7,3,5} (no duplicates allowed); so a(6) = 2 + 7 + 3 + 5 = 17.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ Union@ (Join @@ (FactorInteger[#][[;; , 1]] & /@ Range[Prime[n] + 1, Prime[n + 1] - 1])); Array[a, 65] (* Amiram Eldar, Mar 27 2023 *)
  • PARI
    a(n) = my(list=List()); for(i=prime(n)+1, prime(n+1)-1, my(f=factor(i)[,1]); for (k=1, #f, listput(list, f[k]))); vecsum(Set(list)); \\ Michel Marcus, Mar 27 2023
  • Python
    from sympy import primefactors, sieve
    def A361806(n):
        primeset = []
        for composites in range (sieve[n]+1, sieve[n+1]):
            for p in primefactors(composites): primeset.append(p)
        return(sum(set(primeset)))
    

Formula

a(n) = A008472(A061214(n)).

A362296 Greatest common divisor of composite numbers between the n-th and (n+1)st primes.

Original entry on oeis.org

4, 6, 1, 12, 1, 18, 1, 1, 30, 1, 1, 42, 1, 1, 1, 60, 1, 1, 72, 1, 1, 1, 1, 1, 102, 1, 108, 1, 1, 1, 1, 138, 1, 150, 1, 1, 1, 1, 1, 180, 1, 192, 1, 198, 1, 1, 1, 228, 1, 1, 240, 1, 1, 1, 1, 270, 1, 1, 282, 1, 1, 1, 312, 1, 1, 1, 1, 348, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Chai Wah Wu, Apr 15 2023

Keywords

Crossrefs

Cf. A056831 (LCM), A061214 (product).

Programs

  • PARI
    a(n) = gcd([prime(n)+1..prime(n+1)-1]); \\ Michel Marcus, Apr 16 2023
  • Python
    from sympy import prime, isprime
    def A362296(n): return m-1 if isprime(m:=prime(n)+2) else 1
    

Formula

For n > 1, a(n)=prime(n)+1 if and only if prime(n+1)=prime(n)+2 and a(n)=1 otherwise.

A276376 Exponent of highest power of 3 dividing product of composite numbers between n-th prime and (n+1)-st prime.

Original entry on oeis.org

0, 0, 1, 2, 1, 1, 2, 1, 4, 1, 3, 1, 1, 2, 2, 4, 1, 3, 1, 2, 2, 4, 2, 4, 2, 1, 1, 3, 1, 7, 1, 4, 1, 4, 1, 3, 5, 1, 3, 2, 2, 5, 1, 1, 2, 5, 6, 2, 1, 1, 3, 1, 7, 3, 3, 2, 3, 2, 2, 1, 4, 8, 1, 1, 2, 8, 3, 4, 1, 3, 2, 4, 3, 4, 1, 3, 4, 1, 6, 4, 1, 4, 3, 2, 2, 2, 4, 3, 1, 1, 6, 7, 1, 4, 1, 3, 6
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 01 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[IntegerExponent[Times@@Range[Prime[n]+1,Prime[n+1]-1],3],{n,100}] (* Harvey P. Dale, Mar 23 2021 *)

Formula

a(n) = A007949(A061214(n)).
a(n) = Sum_{k = A000040(n)..A000040(n + 1)} A007949(k) for n > 2.
Previous Showing 11-18 of 18 results.