A321264
a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^J_n(k), where J_() is the Jordan function.
Original entry on oeis.org
1, 1, 4, 34, 456, 12388, 677244, 69513187, 13727785600, 5551190294478, 4378921597198116, 6705804947252051188, 21038823519531799964724, 131183284379709847290156854, 1603688086811508900855649976528, 40293997364837932973226463649637881, 2031337795407293560044987268598542021504
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1 - x^k)^Sum[d^n MoebiusMu[k/d], {d, Divisors[k]}], {k, 1, n}], {x, 0, n}], {n, 0, 16}]
Table[SeriesCoefficient[Exp[Sum[Sum[Sum[d j^n MoebiusMu[d/j], {j, Divisors[d]}], {d, Divisors[k]}] x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 16}]
A346770
Expansion of g.f. Product_{k>=1} (1 - x^k)^phi(k), where phi() is the Euler totient function (A000010).
Original entry on oeis.org
1, -1, -1, -1, 0, 0, 3, 1, 4, 2, 3, -5, 1, -13, -5, -13, -6, -22, 12, -12, 35, 17, 59, 11, 101, -1, 81, -35, 45, -165, 29, -311, -69, -383, -57, -501, 181, -501, 425, -191, 990, -70, 1844, 64, 2305, 183, 2625, -951, 2897, -2701, 1845, -4851, 664, -8824, 670, -12366, 269, -14137, 2884
Offset: 0
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^eulerphi(k)))
-
N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, sigma(k^2, 2)/sigma(k^2)*x^k/k)))
A361721
a(n) = number of isogeny classes of p-divisible groups of abelian varieties of dimension n over an algebraically closed field of characteristic p (for any fixed prime p).
Original entry on oeis.org
1, 2, 3, 5, 8, 13, 20, 31, 47, 70, 103, 151, 218, 313, 446, 629, 883, 1233, 1711, 2362, 3244, 4433, 6034, 8179, 11043, 14852, 19906, 26589, 35400, 46986, 62182, 82057, 107989, 141744, 185583, 242387, 315842, 410627, 532687, 689573, 890837, 1148567, 1478020, 1898430, 2434006, 3115202, 3980232
Offset: 0
We denote a symmetric Newton polygon of height 2n and depth n as a sequence of nonnegative integer coordinates: (0,0)--(x1,y1)--(x2,y2)--...--(xk,yk)--(2n,n) such that the slope of the line through (xi, yi), (x_{i+1}, y_{i+1}) is strictly less than the slope of the line through (x_{i+1}, y_{i+1}), (x_{i+2}, y_{i+2}), and such that, for any 0 < x < 2n, the slope at x plus the slope at 2n-x equals 1.
For n = 2, the a(2) = 3 possible symmetric Newton polygons of length 4 and depth 2 are:
(0,0)--(4,2)
(0,0)--(2,0)--(4,2)
(0,0)--(1,0)--(3,1)--(4,2)
For n = 3, the a(3) = 5 possible symmetric Newton polygons of length 6 and depth 3 are:
(0,0)--(6,3)
(0,0)--(3,0)--(6,3)
(0,0)--(3,1)--(6,3)
(0,0)--(2,0)--(4,1)--(6,3)
(0,0)--(1,0)--(5,2)--(6,3)
- Robin Visser, Table of n, a(n) for n = 0..200
- Y. W. Ding and Y. Ouyang, A simple proof of Dieudonné-Manin classification theorem, Acta Math. Sin. (Engl. Ser.) 28 (2012), no. 8, 1553-1558.
- S. Harashita, Asymptotic formula of the number of Newton polygons, Math. Z. 297 (2021), no. 1-2, 113-132.
- M. Rapoport, On the Newton stratification, Astérisque No. 290 (2003), Séminaire Bourbaki, Exp. No. 903, viii, 207-224.
-
# Use generating function to return a(n)
def a(n):
f = product([(1 - x^k)^(-euler_phi(k)) for k in range(1,n+1)])
gf = sqrt((1+x)*f)/(1-x)
return gf.taylor(x,0,n).coefficients()[n][0]
Original entry on oeis.org
1, 1, 29, 263, 1565, 11217, 74412, 482638, 2987123, 18066149, 107415185, 623612637, 3552605428, 19882256022, 109518424910, 594290145192, 3179607733480, 16790129919934, 87573088547032, 451477766533886, 2302069862201553, 11616226357007259, 58036597014533469
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[DivisorSigma[6, k^2]/DivisorSigma[3, k^2]*a[n-k], {k, 1, n}]/n; Table[a[n], {n, 0, 30}] (* Vaclav Kotesovec, Mar 04 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(exp(sum(k=1, N, sigma(k^2, 6)/sigma(k^2, 3)*x^k/k)))
A307705
Expansion of Product_{k>=1} 1/(1 - x^k)^(k-phi(k)), where phi() is the Euler totient function (A000010).
Original entry on oeis.org
1, 0, 1, 1, 3, 2, 8, 5, 16, 15, 34, 30, 75, 66, 144, 150, 285, 292, 566, 585, 1062, 1170, 1988, 2205, 3729, 4159, 6755, 7785, 12214, 14147, 21957, 25560, 38709, 45839, 67884, 80747, 118332, 141244, 203614, 245330, 348396, 420971, 592439, 717659, 998248, 1215439, 1672544, 2040210, 2786687
Offset: 0
-
nmax = 48; CoefficientList[Series[Product[1/(1 - x^k)^(k - EulerPhi[k]), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 48; CoefficientList[Series[Exp[Sum[(DivisorSigma[2, k] - DivisorSigma[2, k^2]/DivisorSigma[1, k^2]) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 - EulerPhi[d^2], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 48}]
A320783
Inverse Euler transform of (-1)^(n - 1).
Original entry on oeis.org
1, 1, -2, 2, -3, 6, -11, 18, -30, 56, -105, 186, -335, 630, -1179, 2182, -4080, 7710, -14588, 27594, -52377, 99858, -190743, 364722, -698870, 1342176, -2581425, 4971008, -9586395, 18512790, -35792449, 69273666, -134215680, 260300986, -505294125, 981706806
Offset: 0
Euler transforms:
A000081,
A001970,
A006171,
A007294,
A061255,
A061256,
A061257,
A073576,
A117209,
A293548,
A293549.
-
EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
EulerInvTransform[Array[(-1)^(#-1)&,30]]
A320785
Inverse Euler transform of the number of factorizations function A001055.
Original entry on oeis.org
1, 1, 0, 0, 1, -1, 1, -1, 1, 0, -1, 1, -1, 0, 0, 1, 1, -3, 3, -3, 0, 4, -6, 6, -5, 5, -1, -7, 13, -16, 15, -8, -3, 12, -25, 41, -40, 21, 10, -51, 83, -93, 81, -38, -44, 148, -234, 258, -190, 35, 184, -429, 616, -660, 480, -18, -640, 1289, -1714, 1693, -1039, -268
Offset: 0
Euler transforms:
A000081,
A001970,
A006171,
A007294,
A061255,
A061256,
A061257,
A073576,
A117209,
A293548,
A293549.
-
EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
EulerInvTransform[Table[Length[facs[n]],{n,100}]]
A320786
Inverse Euler transform of {1,0,1,0,0,0,...}.
Original entry on oeis.org
1, 1, -1, 1, -1, 1, -2, 2, -2, 3, -5, 6, -7, 11, -16, 20, -27, 39, -55, 75, -102, 145, -207, 286, -397, 565, -802, 1123, -1581, 2248, -3193, 4517, -6399, 9112, -12984, 18457, -26270, 37502, -53553, 76416, -109146, 156135, -223446, 319764, -457884, 656288, -941081
Offset: 0
Euler transforms:
A000081,
A001970,
A006171,
A007294,
A061255,
A061256,
A061257,
A073576,
A117209,
A293548,
A293549.
-
EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
EulerInvTransform[PadRight[{1,0,1},50]]
Comments