cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A321264 a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^J_n(k), where J_() is the Jordan function.

Original entry on oeis.org

1, 1, 4, 34, 456, 12388, 677244, 69513187, 13727785600, 5551190294478, 4378921597198116, 6705804947252051188, 21038823519531799964724, 131183284379709847290156854, 1603688086811508900855649976528, 40293997364837932973226463649637881, 2031337795407293560044987268598542021504
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 01 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k)^Sum[d^n MoebiusMu[k/d], {d, Divisors[k]}], {k, 1, n}], {x, 0, n}], {n, 0, 16}]
    Table[SeriesCoefficient[Exp[Sum[Sum[Sum[d j^n MoebiusMu[d/j], {j, Divisors[d]}], {d, Divisors[k]}] x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 16}]

Formula

a(n) = [x^n] exp(Sum_{k>=1} ( Sum_{d|k} Sum_{j|d} d*j^n*mu(d/j) ) * x^k/k).

A346770 Expansion of g.f. Product_{k>=1} (1 - x^k)^phi(k), where phi() is the Euler totient function (A000010).

Original entry on oeis.org

1, -1, -1, -1, 0, 0, 3, 1, 4, 2, 3, -5, 1, -13, -5, -13, -6, -22, 12, -12, 35, 17, 59, 11, 101, -1, 81, -35, 45, -165, 29, -311, -69, -383, -57, -501, 181, -501, 425, -191, 990, -70, 1844, 64, 2305, 183, 2625, -951, 2897, -2701, 1845, -4851, 664, -8824, 670, -12366, 269, -14137, 2884
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2021

Keywords

Crossrefs

Convolution inverse of A061255.

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^eulerphi(k)))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, sigma(k^2, 2)/sigma(k^2)*x^k/k)))

Formula

G.f.: exp(-Sum_{k>=1} A057660(k) * x^k/k).
a(0) = 1, a(n) = -(1/n) * Sum_{k=1..n} A057660(k) * a(n-k) for n > 0.

A361721 a(n) = number of isogeny classes of p-divisible groups of abelian varieties of dimension n over an algebraically closed field of characteristic p (for any fixed prime p).

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 20, 31, 47, 70, 103, 151, 218, 313, 446, 629, 883, 1233, 1711, 2362, 3244, 4433, 6034, 8179, 11043, 14852, 19906, 26589, 35400, 46986, 62182, 82057, 107989, 141744, 185583, 242387, 315842, 410627, 532687, 689573, 890837, 1148567, 1478020, 1898430, 2434006, 3115202, 3980232
Offset: 0

Views

Author

Steven Groen, James Rawson, and Robin Visser, Mar 21 2023

Keywords

Comments

a(n) is the number of p-divisible groups (also called Barsotti-Tate groups) of height 2n which are isomorphic to their own Cartier dual.
The Dieudonné-Manin classification theorem proves that a(n) is the number of symmetric Newton polygons of height 2n and depth n.
S. Harashita proved that log(a(n)) ~ (3/2)*(zeta(3)/zeta(2))^(1/3) * n^(2/3).

Examples

			We denote a symmetric Newton polygon of height 2n and depth n as a sequence of nonnegative integer coordinates: (0,0)--(x1,y1)--(x2,y2)--...--(xk,yk)--(2n,n) such that the slope of the line through (xi, yi), (x_{i+1}, y_{i+1}) is strictly less than the slope of the line through (x_{i+1}, y_{i+1}), (x_{i+2}, y_{i+2}), and such that, for any 0 < x < 2n, the slope at x plus the slope at 2n-x equals 1.
For n = 2, the a(2) = 3 possible symmetric Newton polygons of length 4 and depth 2 are:
 (0,0)--(4,2)
 (0,0)--(2,0)--(4,2)
 (0,0)--(1,0)--(3,1)--(4,2)
For n = 3, the a(3) = 5 possible symmetric Newton polygons of length 6 and depth 3 are:
 (0,0)--(6,3)
 (0,0)--(3,0)--(6,3)
 (0,0)--(3,1)--(6,3)
 (0,0)--(2,0)--(4,1)--(6,3)
 (0,0)--(1,0)--(5,2)--(6,3)
		

Crossrefs

Cf. A061255.

Programs

  • Sage
    # Use generating function to return a(n)
    def a(n):
        f = product([(1 - x^k)^(-euler_phi(k)) for k in range(1,n+1)])
        gf = sqrt((1+x)*f)/(1-x)
        return gf.taylor(x,0,n).coefficients()[n][0]

Formula

G.f.: sqrt((1+x)*f(x))/(1-x) where f(x) = Product_{k>=1} (1 - x^k)^(-phi(k)).
a(n) ~ 2*K^(1/2) / (sqrt(6*Pi) * C^(7/36) * (2*n)^(11/36)) * exp((3/4)*C^(1/3) * (2n)^(2/3) + (1/2)*(Sum_a g_a(C^(1/3) * (2n)^(-1/3)))), where C = 2*zeta(3)/zeta(2), K = exp(-2*zeta'(-1) - log(2*Pi)/6), g_a(x) is the residue of Gamma(s)*zeta(s+1)*zeta(s-1)/(zeta(s)*x^s) at s=a, and where Sum_a runs through all nontrivial zeros a of zeta(s) [Harashita].

A381680 Euler transform of A115224.

Original entry on oeis.org

1, 1, 29, 263, 1565, 11217, 74412, 482638, 2987123, 18066149, 107415185, 623612637, 3552605428, 19882256022, 109518424910, 594290145192, 3179607733480, 16790129919934, 87573088547032, 451477766533886, 2302069862201553, 11616226357007259, 58036597014533469
Offset: 0

Views

Author

Seiichi Manyama, Mar 04 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[DivisorSigma[6, k^2]/DivisorSigma[3, k^2]*a[n-k], {k, 1, n}]/n; Table[a[n], {n, 0, 30}] (* Vaclav Kotesovec, Mar 04 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(exp(sum(k=1, N, sigma(k^2, 6)/sigma(k^2, 3)*x^k/k)))

Formula

G.f.: 1/Product_{k>=1} (1 - x^k)^A115224(k).
G.f.: exp( Sum_{k>=1} sigma_6(k^2)/sigma_3(k^2) * x^k/k ).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} sigma_6(k^2)/sigma_3(k^2) * a(n-k).
log(a(n)) ~ 7 * 5^(2/7) * zeta(7)^(1/7) * n^(6/7) / (2^(2/7) * 3^(3/7) * Pi^(4/7)). - Vaclav Kotesovec, Mar 04 2025

A307705 Expansion of Product_{k>=1} 1/(1 - x^k)^(k-phi(k)), where phi() is the Euler totient function (A000010).

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 8, 5, 16, 15, 34, 30, 75, 66, 144, 150, 285, 292, 566, 585, 1062, 1170, 1988, 2205, 3729, 4159, 6755, 7785, 12214, 14147, 21957, 25560, 38709, 45839, 67884, 80747, 118332, 141244, 203614, 245330, 348396, 420971, 592439, 717659, 998248, 1215439, 1672544, 2040210, 2786687
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 22 2019

Keywords

Comments

Euler transform of A051953.

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[Product[1/(1 - x^k)^(k - EulerPhi[k]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[Exp[Sum[(DivisorSigma[2, k] - DivisorSigma[2, k^2]/DivisorSigma[1, k^2]) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 - EulerPhi[d^2], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 48}]

Formula

G.f.: exp(Sum_{k>=1} (sigma_2(k) - sigma_2(k^2)/sigma_1(k^2)) * x^k/k).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} cototient(d^2) ) * x^k/k).
a(n) ~ exp(3*((Pi^2 - 6)*Zeta(3))^(1/3) * n^(2/3) / (2*Pi)^(2/3) + 1/4) * ((Pi^2 - 6)*Zeta(3))^(1/4) / (A^3 * 2^(1/12) * 3^(1/2) * Pi^(5/6) * n^(3/4)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 06 2019

A320783 Inverse Euler transform of (-1)^(n - 1).

Original entry on oeis.org

1, 1, -2, 2, -3, 6, -11, 18, -30, 56, -105, 186, -335, 630, -1179, 2182, -4080, 7710, -14588, 27594, -52377, 99858, -190743, 364722, -698870, 1342176, -2581425, 4971008, -9586395, 18512790, -35792449, 69273666, -134215680, 260300986, -505294125, 981706806
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

After a(1) and a(2), same as A038063.
The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Array[(-1)^(#-1)&,30]]

A320785 Inverse Euler transform of the number of factorizations function A001055.

Original entry on oeis.org

1, 1, 0, 0, 1, -1, 1, -1, 1, 0, -1, 1, -1, 0, 0, 1, 1, -3, 3, -3, 0, 4, -6, 6, -5, 5, -1, -7, 13, -16, 15, -8, -3, 12, -25, 41, -40, 21, 10, -51, 83, -93, 81, -38, -44, 148, -234, 258, -190, 35, 184, -429, 616, -660, 480, -18, -640, 1289, -1714, 1693, -1039, -268
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    EulerInvTransform[Table[Length[facs[n]],{n,100}]]

A320786 Inverse Euler transform of {1,0,1,0,0,0,...}.

Original entry on oeis.org

1, 1, -1, 1, -1, 1, -2, 2, -2, 3, -5, 6, -7, 11, -16, 20, -27, 39, -55, 75, -102, 145, -207, 286, -397, 565, -802, 1123, -1581, 2248, -3193, 4517, -6399, 9112, -12984, 18457, -26270, 37502, -53553, 76416, -109146, 156135, -223446, 319764, -457884, 656288, -941081
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[PadRight[{1,0,1},50]]
Previous Showing 21-28 of 28 results.