cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A123900 a(n) = (n+3)!/(d(n)*d(n+1)*d(n+2)) where d(n) = cancellation factor in reducing Sum_{k=0...n} 1/k! to lowest terms.

Original entry on oeis.org

6, 12, 60, 180, 2520, 1008, 18144, 18144, 3991680, 5987520, 155675520, 1089728640, 26153487360, 523069747200, 17784371404800, 12312257126400, 935731541606400, 4678657708032, 12772735542927360, 140500090972200960
Offset: 0

Views

Author

Jonathan Sondow, Oct 18 2006

Keywords

Examples

			a(2) = 60 because (2+3)!/(d(2)*d(3)*d(4)) = 5!/(GCD(2,5)*GCD(6,16)*GCD(24,65)) = 120/2 = 60.
		

Crossrefs

Programs

  • Mathematica
    (A[n_] := If[n==0,1,n*A[n-1]+1]; d[n_] := GCD[A[n],n! ]; Table[(n+3)!/(d[n]*d[n+1]*d[n+2]), {n,0,21}])

Formula

a(n) = (n+3)!/(A093101(n)*A093101(n+1)*A093101(n+2)) where A093101(n) = gcd(n!,1+n+n(n-1)+...+n!).

A069880 Number of terms in the simple continued fraction for Sum_{k=1..n} 1/k!.

Original entry on oeis.org

1, 2, 3, 5, 6, 9, 9, 13, 14, 18, 19, 20, 24, 24, 23, 29, 33, 36, 31, 38, 41, 42, 46, 50, 53, 58, 56, 57, 70, 73, 77, 69, 76, 76, 78, 77, 80, 85, 89, 101, 101, 105, 106, 104, 106, 112, 115, 124, 113, 126, 124, 124, 130, 144, 144, 148, 140, 149, 141, 151, 157, 158, 172
Offset: 1

Views

Author

Benoit Cloitre, May 04 2002

Keywords

Examples

			For n=4, Sum_{k=1..n} 1/k! = 1/1! + 1/2! + 1/3! + 1/4! = 1/1 + 1/2 + 1/6 + 1/24 = 41/24 = 1 + 1/(1 + 1/(2 + 1/(2 + 1/3))) = CF[1;1,2,2,1], so a(4) = 5.
		

Crossrefs

Programs

  • Mathematica
    lcf[f_] := Length[ContinuedFraction[f]]; lcf /@ Accumulate[Table[1/k!, {k, 1, 100}]] (* Amiram Eldar, Apr 30 2022 *)

Formula

Does lim_{n->infinity} a(n)/(n * log(log(n))) = C = 2.XXX...?

A354211 a(n) is the numerator of Sum_{k=0..n} 1 / (2*k+1)!.

Original entry on oeis.org

1, 7, 47, 5923, 426457, 15636757, 7318002277, 1536780478171, 603180793741, 142957467201379447, 60042136224579367741, 10127106976545720025649, 18228792557782296046168201, 12796612375563171824410077103, 3463616416319098507140327535879, 1380498543075754976417359117871773
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 7/6, 47/40, 5923/5040, 426457/362880, 15636757/13305600, 7318002277/6227020800, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Numerator
    nmax = 15; CoefficientList[Series[Sinh[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Numerator
  • PARI
    a(n) = numerator(sum(k=0, n, 1/(2*k+1)!)); \\ Michel Marcus, May 24 2022
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A354211(n): return sum(Fraction(1,factorial(2*k+1)) for k in range(n+1)).numerator # Chai Wah Wu, May 24 2022

Formula

Numerators of coefficients in expansion of sinh(sqrt(x)) / (sqrt(x) * (1 - x)).

A354332 a(n) is the numerator of Sum_{k=0..n} (-1)^k / (2*k+1)!.

Original entry on oeis.org

1, 5, 101, 4241, 305353, 33588829, 209594293, 1100370038249, 23023126954133, 102360822438075317, 42991545423991633141, 4350744396907953273869, 13052233190723859821607001, 9162667699888149594768114701, 7440086172309177470951709137213, 364172638960396581472899447242531
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 5/6, 101/120, 4241/5040, 305353/362880, 33588829/39916800, 209594293/249080832, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Numerator
    nmax = 15; CoefficientList[Series[Sin[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Numerator
  • PARI
    a(n) = numerator(sum(k=0, n, (-1)^k/(2*k+1)!)); \\ Michel Marcus, May 24 2022
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A354332(n): return sum(Fraction(-1 if k % 2 else 1,factorial(2*k+1)) for k in range(n+1)).numerator # Chai Wah Wu, May 24 2022

Formula

Numerators of coefficients in expansion of sin(sqrt(x)) / (sqrt(x) * (1 - x)).

A354334 a(n) is the numerator of Sum_{k=0..n} 1 / (2*k)!.

Original entry on oeis.org

1, 3, 37, 1111, 6913, 799933, 739138093, 44841044309, 32285551902481, 9879378882159187, 1251387991740163687, 1734423756551866870183, 136771701945232930334431, 23048564587067030852654113, 42769754577382930342215977687, 409306551305554643375006906464591
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 3/2, 37/24, 1111/720, 6913/4480, 799933/518400, 739138093/479001600, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(2 k)!, {k, 0, n}], {n, 0, 15}] // Numerator
    nmax = 15; CoefficientList[Series[Cosh[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
    Accumulate[1/(2*Range[0,20])!]//Numerator (* Harvey P. Dale, Sep 05 2024 *)
  • PARI
    a(n) = numerator(sum(k=0, n, 1/(2*k)!)); \\ Michel Marcus, May 24 2022
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A354334(n): return sum(Fraction(1,factorial(2*k)) for k in range(n+1)).numerator # Chai Wah Wu, May 24 2022

Formula

Numerators of coefficients in expansion of cosh(sqrt(x)) / (1 - x).

A354298 a(n) is the numerator of Sum_{k=1..n} (-1)^(k+1) / (2*k-1)!!.

Original entry on oeis.org

1, 2, 11, 76, 137, 7534, 97943, 1469144, 24975449, 94906706, 9965204131, 229199695012, 5729992375301, 9100576125478, 897316805972131, 563093542209232, 4589775462547450033, 5539384178936577626, 5943759223998947792699, 46361321947191792783052, 9504070999174317520525661
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2/3, 11/15, 76/105, 137/189, 7534/10395, 97943/135135, 1469144/2027025, 24975449/34459425, ...
		

Crossrefs

Programs

  • Maple
    S:= 0: R:= NULL:
    for n from 1 to 100 do
      S:= S + (-1)^(n+1)/doublefactorial(2*n-1);
      R:= R, numer(S);
    od:
    R; # Robert Israel, Jan 10 2024
  • Mathematica
    Table[Sum[(-1)^(k + 1)/(2 k - 1)!!, {k, 1, n}], {n, 1, 21}] // Numerator
    nmax = 21; CoefficientList[Series[Sqrt[Pi x Exp[-x]/2] Erfi[Sqrt[x/2]]/(1 - x), {x, 0, nmax}], x] // Numerator // Rest
    Table[1/(1 + ContinuedFractionK[2 k - 1, 2 k, {k, 1, n - 1}]), {n, 1, 21}] // Numerator

Formula

Numerators of coefficients in expansion of sqrt(Pi*x*exp(-x)/2) * erfi(sqrt(x/2)) / (1 - x).

A353545 a(n) is the numerator of Sum_{k=1..n} 1 / (k*k!).

Original entry on oeis.org

1, 5, 47, 379, 9487, 14233, 87179, 44635753, 1205165611, 6025828181, 729125211161, 972166948343, 54765404757169, 71879593743829, 25876653747779441, 6624423359431551911, 1914458350875718742519, 51690375473644406388353, 18660225545985630712321553, 186602255459856307126125437
Offset: 1

Views

Author

Ilya Gutkovskiy, May 25 2022

Keywords

Examples

			1, 5/4, 47/36, 379/288, 9487/7200, 14233/10800, 87179/66150, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(k k!), {k, 1, n}], {n, 1, 20}] // Numerator
    nmax = 20; Assuming[x > 0, CoefficientList[Series[(ExpIntegralEi[x] - Log[x] - EulerGamma)/(1 - x), {x, 0, nmax}], x]] // Numerator // Rest
  • PARI
    a(n) = numerator(sum(k=1, n, 1/(k*k!))); \\ Michel Marcus, May 26 2022
    
  • Python
    from math import factorial
    from fractions import Fraction
    def A353545(n): return sum(Fraction(1, k*factorial(k)) for k in range(1,n+1)).numerator # Chai Wah Wu, May 27 2022

Formula

Numerators of coefficients in expansion of (Ei(x) - log(x) - gamma) / (1 - x), x > 0.

A354402 a(n) is the numerator of Sum_{k=1..n} (-1)^(k+1) / (k*k!).

Original entry on oeis.org

1, 3, 29, 229, 5737, 8603, 210781, 26979863, 728456581, 3642282779, 440716217519, 1762864869691, 297924162982399, 260683642609331, 15641018556560861, 4004100750479565401, 1157185116888594641129, 31243998155992054970143, 11279083334313131850347743, 112790833343131318500567523
Offset: 1

Views

Author

Ilya Gutkovskiy, May 25 2022

Keywords

Examples

			1, 3/4, 29/36, 229/288, 5737/7200, 8603/10800, 210781/264600, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(k + 1)/(k k!), {k, 1, n}], {n, 1, 20}] // Numerator
    nmax = 20; Assuming[x > 0, CoefficientList[Series[(EulerGamma + Log[x] - ExpIntegralEi[-x])/(1 - x), {x, 0, nmax}], x]] // Numerator // Rest
  • PARI
    a(n) = numerator(sum(k=1, n, (-1)^(k+1)/(k*k!))); \\ Michel Marcus, May 26 2022
    
  • Python
    from math import factorial
    from fractions import Fraction
    def A354402(n): return sum(Fraction(1 if k & 1 else -1, k*factorial(k)) for k in range(1,n+1)).numerator # Chai Wah Wu, May 27 2022

Formula

Numerators of coefficients in expansion of (gamma + log(x) - Ei(-x)) / (1 - x), x > 0.

A070267 Maximum element in the simple continued fraction expansion of e(n) = 1+1/2!+1/3!+...+1/n!.

Original entry on oeis.org

1, 2, 2, 3, 8, 5, 4, 14, 6, 29, 10, 16, 20, 18, 42, 59, 13, 14, 59, 35, 31, 184, 24, 65, 42, 64, 401, 71, 26, 24, 36, 31, 52, 187, 28, 41, 128, 177, 3041, 249, 315, 162, 118, 36, 101, 135, 86, 70, 194, 104, 274, 62, 2515, 305, 68, 59, 49, 88, 359, 280, 100, 702, 52
Offset: 1

Views

Author

Benoit Cloitre, May 09 2002

Keywords

Examples

			The simple continued fraction expansion of e(10) is [1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 11, 1, 1, 29, 1, 1, 2], hence a(10) = 29.
		

Crossrefs

Programs

  • Mathematica
    Table[ Max[ ContinuedFraction[ Sum[1/i!, {i, 1, n}]]], {n, 1, 65}]

A102469 Largest prime factor of numerator of Sum_{k=0...n} 1/k!, with a(0) = 1.

Original entry on oeis.org

1, 2, 5, 2, 13, 163, 103, 137, 863, 98641, 10687, 31469, 1540901, 522787, 5441, 226871807, 13619, 1276861, 414026539, 2124467, 12670743557, 838025081381, 44659157, 323895443, 337310723185584470837549, 54352957, 11301647941785046703319941, 102505951982728548829
Offset: 0

Views

Author

Jonathan Sondow, Jan 09 2005

Keywords

Comments

It appears that a(n) = A102468(n) (Smarandache number of the same numerator) except when n = 3. The largest prime factor of the corresponding denominator is A007917(n) for n > 1. Omitting the 0th term in the sum, it appears that the largest prime factor and the Kempner number A002034, of the numerator of Sum_{k=1...n} 1/k! are both equal to A096058(n).

Examples

			Sum_{k=0...3} 1/k! = 8/3 and 2 is the largest prime factor 8, so a(3) = 2.
		

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[-1,1]]&/@Numerator[Accumulate[1/Range[0,30]!]] (* Harvey P. Dale, Nov 14 2012 *)
  • PARI
    a(n) = if(n==0, return(1)); vecmax(factor(numerator(sum(k=0, n, 1/k!)))[,1]); \\ Daniel Suteu, Jun 09 2022

Formula

a(n) = A006530(A061354(n)).
Previous Showing 11-20 of 33 results. Next