cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A330030 Least k such that Sum_{i=0..n} k^n / i! is a positive integer.

Original entry on oeis.org

1, 1, 2, 3, 6, 30, 30, 42, 210, 42, 210, 2310, 2310, 30030, 30030, 30030, 30030, 39270, 510510, 1939938, 9699690, 9699690, 9699690, 17160990, 223092870, 903210, 223092870, 223092870, 223092870, 6469693230, 6469693230, 200560490130, 200560490130, 10555815270, 200560490130
Offset: 0

Views

Author

Jinyuan Wang, Mar 07 2020

Keywords

Comments

Least k > 0 such that k^n/A061355(n) is an integer.

Examples

			For n = 7, the denominator of Sum_{i=0..7} 1/i! is 252 = 2^2*3^2*7, so a(7) = 2*3*7 = 42.
		

Crossrefs

Programs

  • PARI
    a(n) = factorback(factorint(denominator(sum(i=2, n, 1/i!)))[, 1]);

Formula

a(n) = A007947(A061355(n)).

A354302 a(n) is the numerator of Sum_{k=0..n} 1 / (k!)^2.

Original entry on oeis.org

1, 2, 9, 41, 1313, 5471, 1181737, 28952557, 1235309099, 150090055529, 30018011105801, 201787741322329, 523033825507476769, 44196358255381786981, 5774990812036553498851, 1949059399062336805862213, 997918412319916444601453057, 3697415655903280160125896583
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Numerator
    nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator

Formula

Numerators of coefficients in expansion of BesselI(0,2*sqrt(x)) / (1 - x).

A354304 a(n) is the numerator of Sum_{k=0..n} (-1)^k / (k!)^2.

Original entry on oeis.org

1, 0, 1, 2, 43, 403, 23213, 118483, 51997111, 1842647621, 327581799289, 8918414485643, 4670006130663971, 361730891537680087, 130890931830249779173, 427294615628884602769, 6534075316966068976316143, 885163015595247156635327497, 41526561745210509140249210357
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 0, 1/4, 2/9, 43/192, 403/1800, 23213/103680, 118483/529200, 51997111/232243200, 1842647621/8230118400, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(k!)^2, {k, 0, n}], {n, 0, 18}] // Numerator
    nmax = 18; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator

Formula

Numerators of coefficients in expansion of BesselJ(0,2*sqrt(x)) / (1 - x).

A102468 a(n)! is the smallest factorial divisible by the numerator of Sum_{k=0...n} 1/k!, with a(0) = 1.

Original entry on oeis.org

1, 2, 5, 4, 13, 163, 103, 137, 863, 98641, 10687, 31469, 1540901, 522787, 5441, 226871807, 13619, 1276861, 414026539, 2124467, 12670743557, 838025081381, 44659157, 323895443, 337310723185584470837549, 54352957
Offset: 0

Views

Author

Jonathan Sondow, Jan 09 2005

Keywords

Comments

It appears that a(n) = A102469(n) (largest prime factor of the same numerator) except when n = 3. The smallest factorial divisible by the corresponding denominator is n!. Omitting the 0th term in the sum, it appears that the Kempner number (A002034) and the largest prime factor, of the numerator of Sum_{k=1...n} 1/k! are both equal to A096058(n).
The Mathematica program given below was used to generate the sequence. If the numerator of Sum_{k=0...n}(1/k!) is squarefree, the program prints the value of the numerator's largest prime factor, which must equal a(n). Otherwise, the program prints the complete factorization of the numerator so a(n) can be determined by inspection. - Ryan Propper, Jul 31 2005

Examples

			Sum_{k=0...3} 1/k! = 8/3 and 4! is the smallest factorial divisible by 8, so a(3) = 4.
		

Crossrefs

Programs

  • Mathematica
    Do[l = FactorInteger[Numerator[Sum[1/k!, {k, 0, n}]]]; If[Length[l] == Plus @@ Last /@ l, Print[Max[First /@ l]], Print[l]], {n, 1, 30}] (* Ryan Propper, Jul 31 2005 *)
    nmax = 30; Clear[a]; Do[f = FactorInteger[ Numerator[ Sum[1/k!, {k, 0, n}] ] ]; a[n] = If[Length[f] == Total[f[[All, 2]] ], Max[f[[All, 1]] ], f[[-1, 1]] ], {n, 0, nmax}]; a[3] = 4; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Sep 16 2015, adapted from Ryan Propper's script *)
  • PARI
    a(n) = {j = 1; s = numerator(sum(k=0, n, 1/k!)); while (j! % s, j++); j;} \\ Michel Marcus, Sep 16 2015

Formula

a(n) = A002034(A061354(n)).

Extensions

More terms from Ryan Propper, Jul 31 2005

A102470 Numbers n such that denominator of Sum_{k=0 to n} 1/k! is n!.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 10, 16, 18, 20, 26, 28, 40, 46, 48, 58, 66, 68, 70, 80, 86, 96, 98, 118, 126, 130, 136, 146, 150, 170, 176, 178, 180, 188, 190, 206, 208, 210, 216, 230, 260, 266, 268, 278, 286, 288, 300, 306, 308, 326, 328, 338, 346, 358, 366, 370, 378, 380, 388
Offset: 1

Views

Author

Jonathan Sondow, Jan 14 2005

Keywords

Comments

a(n) is even for n > 1, as Sum_{k=0 to n} 1/k! reduces to lower terms when n > 1 is odd.

Examples

			1/0! + 1/1! + 1/2! + 1/3! +1/4! = 65/24 and 24 = 4!, so 4 is a member. But 1/0! + 1/1! + 1/2! + 1/3! = 8/3 and 3 < 3!, so 3 is not a member.
		

Crossrefs

For n > 0, n is a member <=> A093101(n) = 1 <=> A061355(n) = n! <=> A061355(n) = A002034(A061355(n))! <=> A061354(n) = 1+n+n(n-1)+n(n-1)(n-2)+...+n!. See also A102471.

Programs

  • Mathematica
    fQ[n_] := (Denominator[Sum[1/k!, {k, 0, n}]] == n!); Select[ Range[0, 389], fQ[ # ] &] (* Robert G. Wilson v, Jan 15 2005 *)

Formula

a(n) = 2*A102471(n-1) for n > 1.

Extensions

More terms from Robert G. Wilson v, Jan 15 2005

A195326 Numerators of fractions leading to e - 1/e (A174548).

Original entry on oeis.org

0, 2, 2, 7, 7, 47, 47, 5923, 5923, 426457, 426457, 15636757, 15636757, 7318002277, 7318002277, 1536780478171, 1536780478171, 603180793741, 603180793741, 142957467201379447, 142957467201379447
Offset: 0

Views

Author

Paul Curtz, Oct 12 2011

Keywords

Comments

The sequence of approximations of exp(1) obtained by truncating the Taylor series of exp(x) after n terms is A061354(n)/A061355(n) = 1, 2, 5/2, 8/3, 65/24, ...
A Taylor series of exp(-1) is 1, 0, 1/2, 1/3, 3/8, ... and (apart from the first 2 terms) given by A000255(n)/A001048(n). Subtracting both sequences term by term we obtain a series for exp(1) - exp(-1) = 0, 2, 2, 7/3, 7/3, 47/20, 47/20, 5923/2520, 5923/2520, 426457/181440, 426457/181440, ... which defines the numerators here.
Each second of the denominators (that is 3, 2520, 19958400, ...) is found in A085990 (where each third term, that is 60, 19958400, ...) is to be omitted.
This numerator sequence here is basically obtained by doubling entries of A051397, A009628, A087208, or A186763, caused by the standard associations between cosh(x), sinh(x) and exp(x).

Examples

			a(0) =  1  -  1;
a(1) =  2  -  0;
a(2) = 5/2 - 1/2.
		

Crossrefs

Programs

  • Maple
    taylExp1 := proc(n)
            add(1/j!,j=0..n) ;
    end proc:
    A000255 := proc(n)
            if n <=1 then
                    1;
            else
                    n*procname(n-1)+(n-1)*procname(n-2) ;
            end if;
    end proc:
    A001048 := proc(n)
            n!+(n-1)! ;
    end proc:
    A195326 := proc(n)
            if n = 0 then
                    0;
            elif n =1 then
                    2;
            else
                    taylExp1(n) -A000255(n-2)/A001048(n-1);
            end if;
              numer(%);
    end proc:
    seq(A195326(n),n=0..20) ; # R. J. Mathar, Oct 14 2011

Extensions

Material meant to be placed in other sequences removed by R. J. Mathar, Oct 14 2011

A235214 Decimal expansion of exp(exp(1) + 1).

Original entry on oeis.org

4, 1, 1, 9, 3, 5, 5, 5, 6, 7, 4, 7, 1, 6, 1, 2, 3, 5, 6, 3, 1, 8, 8, 2, 8, 7, 6, 8, 4, 3, 6, 4, 3, 3, 1, 9, 7, 7, 8, 5, 7, 6, 8, 3, 0, 4, 2, 8, 6, 3, 1, 5, 7, 7, 8, 3, 0, 8, 8, 0, 4, 4, 2, 2, 3, 2, 3, 9, 1, 4, 7, 7, 4, 7, 1, 7, 9, 8, 9, 6, 3, 0, 7, 0, 4, 5, 4, 7, 2, 2, 3, 4, 8, 6, 6, 9, 6, 2, 9, 4, 2, 7, 2, 3, 4
Offset: 2

Views

Author

Richard R. Forberg, Jan 04 2014

Keywords

Comments

May also be written as e*(e^e).

Examples

			41.19355567471612356318828...
		

Crossrefs

Cf. A005493, A234473 (e^e/e), A073226 (e^e), A001113 (e).

Programs

Formula

Equals Sum_{n>=0} A005493(n)/n!.
Equals 2*lim_{n->oo} n*(exp(Sum_{k=0..n} 1/k!) - ((1+1/n)^n)^e). See the Mathematical Gazette link. - Michel Marcus, Oct 24 2017
Equals Sum_{k>=1} e^k/(k-1)!. - Amiram Eldar, Jul 28 2020

Extensions

More terms from Rick L. Shepherd, Jan 25 2014

A323274 a(n) = ceiling(1/(e - 1/0! - 1/1! - 1/2! - ... - 1/n!)).

Original entry on oeis.org

1, 2, 5, 20, 101, 620, 4420, 35894, 326946, 3301574, 36613057, 442369756, 5784470466, 81391912093, 1226260443926, 19696254286261, 335987466998509, 6066332690596289, 115577941857034741, 2317310520602816401, 48773396185794559169, 1075223007090667361164
Offset: 0

Views

Author

Clark Kimberling, Jan 11 2019

Keywords

Comments

a(n) = least k such that 1/k > e - (n-th partial sum of the Maclaurin series for e). Let b(n) = a(n)/a(n+1). Conjectures: if n > 3, then n+1 < b(n) < n+2 and 0 < b(n+1)-b(n) < 1.

Examples

			Approximates for the first 5 numbers e - (1/0!+1/1!+1/2!+...+1/n!) are 1.71828, 0.718282, 0.218282, 0.0516152, 0.0099485, with approximate reciprocals 0.581977, 1.39221, 4.58123, 19.3742, 100.518.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := E - Sum[1/k!, {k, 0, n}]
    Table[Ceiling[1/s[n]], {n, 0, 30}]

A354138 a(n) is the numerator of Sum_{k=0..n} (-1)^k / (2*k)!.

Original entry on oeis.org

1, 1, 13, 389, 4357, 1960649, 258805669, 47102631757, 11304631621681, 691843455246877, 1314502564969066301, 607300185015708631061, 335229702128671164345673, 217899306383636256824687449, 32946375125205802031892742289, 848027998784883070051677094421
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 1/2, 13/24, 389/720, 4357/8064, 1960649/3628800, 258805669/479001600, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(2 k)!, {k, 0, n}], {n, 0, 15}] // Numerator
    nmax = 15; CoefficientList[Series[Cos[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
  • PARI
    a(n) = numerator(sum(k=0, n, (-1)^k/(2*k)!)); \\ Michel Marcus, May 24 2022

Formula

Numerators of coefficients in expansion of cos(sqrt(x)) / (1 - x).

A109621 Numbers n such that the numerator of Sum_{k=0..n} 1/k!, in reduced form, is prime.

Original entry on oeis.org

1, 2, 5, 9, 24, 32, 321, 343, 352, 511, 685, 807, 966, 1079, 1274, 1381, 2016, 3226, 8130
Offset: 1

Views

Author

Ryan Propper, Aug 01 2005

Keywords

Comments

Terms through 807 correspond to certified primes.
If it exists, a(20) > 14304. - J.W.L. (Jan) Eerland, Sep 13 2022

Examples

			Sum_{k=0..9} 1/k! = 98641/36288 and 98641 is prime, so 9 is in the sequence.
		

Crossrefs

Cf. A061354.

Programs

  • Mathematica
    s = 0; Do[s += 1/n!; k = Numerator[s]; If[PrimeQ[k], Print[n]], {n, 0, 3300}]
    Flatten[Position[Accumulate[1/Range[0,3230]!],?(PrimeQ[ Numerator[ #]]&)]] -1 (* _Harvey P. Dale, Sep 25 2019 *)
    n=0;Monitor[Parallelize[While[True,If[PrimeQ[Numerator[Sum[1/Factorial[k],{k,0,n}]]],Print[n]];n++];n],n] (* J.W.L. (Jan) Eerland, Sep 13 2022 *)

Extensions

a(19) from J.W.L. (Jan) Eerland, Sep 13 2022
Previous Showing 21-30 of 33 results. Next