A330030 Least k such that Sum_{i=0..n} k^n / i! is a positive integer.
1, 1, 2, 3, 6, 30, 30, 42, 210, 42, 210, 2310, 2310, 30030, 30030, 30030, 30030, 39270, 510510, 1939938, 9699690, 9699690, 9699690, 17160990, 223092870, 903210, 223092870, 223092870, 223092870, 6469693230, 6469693230, 200560490130, 200560490130, 10555815270, 200560490130
Offset: 0
Keywords
Examples
For n = 7, the denominator of Sum_{i=0..7} 1/i! is 252 = 2^2*3^2*7, so a(7) = 2*3*7 = 42.
Links
- Jinyuan Wang, Table of n, a(n) for n = 0..500
Programs
-
PARI
a(n) = factorback(factorint(denominator(sum(i=2, n, 1/i!)))[, 1]);
Comments