cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A102470 Numbers n such that denominator of Sum_{k=0 to n} 1/k! is n!.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 10, 16, 18, 20, 26, 28, 40, 46, 48, 58, 66, 68, 70, 80, 86, 96, 98, 118, 126, 130, 136, 146, 150, 170, 176, 178, 180, 188, 190, 206, 208, 210, 216, 230, 260, 266, 268, 278, 286, 288, 300, 306, 308, 326, 328, 338, 346, 358, 366, 370, 378, 380, 388
Offset: 1

Views

Author

Jonathan Sondow, Jan 14 2005

Keywords

Comments

a(n) is even for n > 1, as Sum_{k=0 to n} 1/k! reduces to lower terms when n > 1 is odd.

Examples

			1/0! + 1/1! + 1/2! + 1/3! +1/4! = 65/24 and 24 = 4!, so 4 is a member. But 1/0! + 1/1! + 1/2! + 1/3! = 8/3 and 3 < 3!, so 3 is not a member.
		

Crossrefs

For n > 0, n is a member <=> A093101(n) = 1 <=> A061355(n) = n! <=> A061355(n) = A002034(A061355(n))! <=> A061354(n) = 1+n+n(n-1)+n(n-1)(n-2)+...+n!. See also A102471.

Programs

  • Mathematica
    fQ[n_] := (Denominator[Sum[1/k!, {k, 0, n}]] == n!); Select[ Range[0, 389], fQ[ # ] &] (* Robert G. Wilson v, Jan 15 2005 *)

Formula

a(n) = 2*A102471(n-1) for n > 1.

Extensions

More terms from Robert G. Wilson v, Jan 15 2005

A102471 Numbers n such that the denominator of Sum_{k=0 to 2n} 1/k! is (2n)!.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 9, 10, 13, 14, 20, 23, 24, 29, 33, 34, 35, 40, 43, 48, 49, 59, 63, 65, 68, 73, 75, 85, 88, 89, 90, 94, 95, 103, 104, 105, 108, 115, 130, 133, 134, 139, 143, 144, 150, 153, 154, 163, 164, 169, 173, 179, 183, 185, 189, 190, 194, 195, 198, 199, 204
Offset: 1

Views

Author

Jonathan Sondow, Jan 14 2005

Keywords

Comments

n is a member <=> A093101(2n) = 1 <=> A061355(2n) = (2n)! <=> A061355(2n) = A002034(A061355(2n))!.

Examples

			Sum_{k=0 to 6} 1/k! = 1957/720 and 720 = 6! = (2*3)!, so 3 is a member. But Sum_{k=0 to 12} 1/k! = 260412269/95800320 and 95800320 < 12! = (2*6)!, so 6 is not a member.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := (Denominator[Sum[1/k!, {k, 0, 2n}]] == (2n)!); Select[ Range[0, 204], fQ[ # ] &] (* Robert G. Wilson v, Jan 15 2005 *)

Formula

a(n) = A102470(n+1)/2 for n > 0.

Extensions

More terms from Robert G. Wilson v, Jan 15 2005

A195326 Numerators of fractions leading to e - 1/e (A174548).

Original entry on oeis.org

0, 2, 2, 7, 7, 47, 47, 5923, 5923, 426457, 426457, 15636757, 15636757, 7318002277, 7318002277, 1536780478171, 1536780478171, 603180793741, 603180793741, 142957467201379447, 142957467201379447
Offset: 0

Views

Author

Paul Curtz, Oct 12 2011

Keywords

Comments

The sequence of approximations of exp(1) obtained by truncating the Taylor series of exp(x) after n terms is A061354(n)/A061355(n) = 1, 2, 5/2, 8/3, 65/24, ...
A Taylor series of exp(-1) is 1, 0, 1/2, 1/3, 3/8, ... and (apart from the first 2 terms) given by A000255(n)/A001048(n). Subtracting both sequences term by term we obtain a series for exp(1) - exp(-1) = 0, 2, 2, 7/3, 7/3, 47/20, 47/20, 5923/2520, 5923/2520, 426457/181440, 426457/181440, ... which defines the numerators here.
Each second of the denominators (that is 3, 2520, 19958400, ...) is found in A085990 (where each third term, that is 60, 19958400, ...) is to be omitted.
This numerator sequence here is basically obtained by doubling entries of A051397, A009628, A087208, or A186763, caused by the standard associations between cosh(x), sinh(x) and exp(x).

Examples

			a(0) =  1  -  1;
a(1) =  2  -  0;
a(2) = 5/2 - 1/2.
		

Crossrefs

Programs

  • Maple
    taylExp1 := proc(n)
            add(1/j!,j=0..n) ;
    end proc:
    A000255 := proc(n)
            if n <=1 then
                    1;
            else
                    n*procname(n-1)+(n-1)*procname(n-2) ;
            end if;
    end proc:
    A001048 := proc(n)
            n!+(n-1)! ;
    end proc:
    A195326 := proc(n)
            if n = 0 then
                    0;
            elif n =1 then
                    2;
            else
                    taylExp1(n) -A000255(n-2)/A001048(n-1);
            end if;
              numer(%);
    end proc:
    seq(A195326(n),n=0..20) ; # R. J. Mathar, Oct 14 2011

Extensions

Material meant to be placed in other sequences removed by R. J. Mathar, Oct 14 2011

A235214 Decimal expansion of exp(exp(1) + 1).

Original entry on oeis.org

4, 1, 1, 9, 3, 5, 5, 5, 6, 7, 4, 7, 1, 6, 1, 2, 3, 5, 6, 3, 1, 8, 8, 2, 8, 7, 6, 8, 4, 3, 6, 4, 3, 3, 1, 9, 7, 7, 8, 5, 7, 6, 8, 3, 0, 4, 2, 8, 6, 3, 1, 5, 7, 7, 8, 3, 0, 8, 8, 0, 4, 4, 2, 2, 3, 2, 3, 9, 1, 4, 7, 7, 4, 7, 1, 7, 9, 8, 9, 6, 3, 0, 7, 0, 4, 5, 4, 7, 2, 2, 3, 4, 8, 6, 6, 9, 6, 2, 9, 4, 2, 7, 2, 3, 4
Offset: 2

Views

Author

Richard R. Forberg, Jan 04 2014

Keywords

Comments

May also be written as e*(e^e).

Examples

			41.19355567471612356318828...
		

Crossrefs

Cf. A005493, A234473 (e^e/e), A073226 (e^e), A001113 (e).

Programs

Formula

Equals Sum_{n>=0} A005493(n)/n!.
Equals 2*lim_{n->oo} n*(exp(Sum_{k=0..n} 1/k!) - ((1+1/n)^n)^e). See the Mathematical Gazette link. - Michel Marcus, Oct 24 2017
Equals Sum_{k>=1} e^k/(k-1)!. - Amiram Eldar, Jul 28 2020

Extensions

More terms from Rick L. Shepherd, Jan 25 2014

A354378 a(n) is the denominator of Sum_{k=0..n} (-1)^k / (2*k)!.

Original entry on oeis.org

1, 2, 24, 720, 8064, 3628800, 479001600, 87178291200, 20922789888000, 1280474741145600, 2432902008176640000, 1124000727777607680000, 620448401733239439360000, 403291461126605635584000000, 60977668922342772100300800000, 1569543549184562477137920000000
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 1/2, 13/24, 389/720, 4357/8064, 1960649/3628800, 258805669/479001600, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(2 k)!, {k, 0, n}], {n, 0, 15}] // Denominator
    nmax = 15; CoefficientList[Series[Cos[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
  • PARI
    a(n) = denominator(sum(k=0, n, (-1)^k/(2*k)!)); \\ Michel Marcus, May 24 2022

Formula

Denominators of coefficients in expansion of cos(sqrt(x)) / (1 - x).

A102584 a(n) = 1/2 times the cancellation factor in reducing Sum_{k=0 to 2n+1} 1/k! to lowest terms.

Original entry on oeis.org

1, 1, 10, 5, 4, 1, 2, 65, 2000, 1, 26, 247, 20, 5, 2, 19, 8, 115, 10, 23, 52, 31, 10, 65, 416, 37, 2, 25, 20, 1, 38, 1, 40, 325, 1406, 37, 676, 65, 10, 63829, 368, 1, 230, 5, 4, 1, 26, 5, 40, 247, 26, 43, 3100, 9785, 2, 1, 256, 5, 2050, 13, 388, 1, 4810, 1495, 8, 23, 254, 5
Offset: 1

Views

Author

Jonathan Sondow, Jan 22 2005

Keywords

Comments

The denominator of Sum_{k=0 to m} 1/k! is m!/d, where d = A093101(m). If m = 2n+1 > 1, then d is even and a(n) = d/2.

Examples

			1/0! + 1/1! + 1/2! + 1/3! + 1/4! + 1/5! + 1/6! + 1/7! = 13700/5040 = (20*685)/(20*252) and 7 = 2*3+1, so a(3) = 20/2 = 10.
		

Crossrefs

a(n) = A093101(2n+1)/2 = (2n+1)!/(2*A061355(2n+1)).
See also A102581, A102582.

Programs

  • PARI
    a(n) = {my(m = (2*n+1), s = 1, prt = m); for (k=1, m, s += prt; prt *= (m-k);); gcd(m!, s)/2;} \\ Michel Marcus, Sep 29 2017

Formula

a(n) = gcd(m!, 1+m+m(m-1)+m(m-1)(m-2)+...+m!)/2, where m = 2n+1.

A129978 Numbers k such that A120265(k) = numerator(Sum_{j=1..k} 1/j!) is a prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 12, 16, 19, 21, 22, 25, 41, 114, 181, 236, 2003, 6138
Offset: 1

Views

Author

Alexander Adamchuk, Jun 13 2007

Keywords

Comments

Corresponding primes are A120265(a(n)) = {3, 5, 41, 103, 1237, 433, 164611949, 35951249665217, 52255141388393, 43894318766250120011, 386270005143001056097, 53952693026046706215979, 1249584099900912571604389306768231303904375213027, ...}.
a(17) > 1000; A120265(1000) ~ 2.9*10^2564 = (e-1)*A061355(1000). - M. F. Hasler, Jun 18 2007

Crossrefs

Programs

  • Mathematica
    Do[ f=Numerator[ Sum[ 1/k!, {k,1,n} ] ]; If[ PrimeQ[f], Print[{n,f}] ], {n,1,236} ]
    Flatten[Position[Numerator[Accumulate[1/Range[2150]!]],?PrimeQ]] (* _Harvey P. Dale, May 03 2013 *)
  • PARI
    my(t=0); for( n=1,1000, if( ispseudoprime( numerator( t+=1/n!)), print1( n", " ))) \\ M. F. Hasler, Jun 18 2007

Extensions

Edited by M. F. Hasler, Jun 18 2007
a(17) from Alexander Adamchuk, May 02 2010
a(18) from Michael S. Branicky, Sep 24 2024

A196080 Numerators of the sum of the n-th partial sums of the expansions of e and 1/e.

Original entry on oeis.org

2, 2, 3, 3, 37, 37, 1111, 1111, 6913, 6913, 799933, 799933, 739138093, 739138093, 44841044309, 44841044309, 32285551902481, 32285551902481, 9879378882159187, 9879378882159187, 1251387991740163687
Offset: 0

Views

Author

Paul Curtz, Sep 27 2011

Keywords

Comments

The n-th partial sums of the Taylor expansion of E are f(n) = A061354(n)/A061355(n) = 1, 2, 5/2, 8/3, 65/24, 163/60,.. .
The partial sums of an expansion of 1/e are essentially A000255(n-2)/A001048(n-1) preceded by 1 and 0, namely g(n)= 1, 0, 1/2, 1/3, 3/8, 11/30, 53/144, 103/280, 2119/5760,... (Jolley's partial sums of 1/E in A068985 is the bisection 0, 1/3, 11/30, 103/280, 16687/45360,... of g(n).)
The current sequence are the numerators of f(n)+g(n), converging to E+1/E, namely 2, 2, 3, 3, 37/12, 37/12, 1111/360, 1111/360, 6913/2240 = 62217/21060, 6913/2240 = 62217/21060, 799933/259200 = 5599531/1814400,... The unreduced fractions are apparently given by duplicated A051396(n+1)/A002674(n).

Examples

			a(0)=1+1, a(1)=2+0, a(2)=(5+1)/2, a(3)=(8+1)/3.
		

Crossrefs

Cf. A001113, A068985, A137204 (e+1/e).

Programs

  • Mathematica
    a[n_] := (E*Gamma[n+1, 1] + (1/E)*Gamma[n+1, -1])/n! // FullSimplify // Numerator; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 02 2012 *)

Extensions

Redefined by reduced fractions. - R. J. Mathar, Jul 02 2012

A233044 Pairs p, q for those partial sums p/q of the series e = sum_{n>=0} 1/n! that are not convergents to e.

Original entry on oeis.org

1, 1, 5, 2, 65, 24, 163, 60, 1957, 720, 685, 252, 109601, 40320, 98641, 36288, 9864101, 3628800, 13563139, 4989600, 260412269, 95800320, 8463398743, 3113510400, 47395032961, 17435658240, 888656868019, 326918592000
Offset: 1

Views

Author

Jonathan Sondow, Dec 07 2013

Keywords

Comments

Sondow (2006) conjectured that 2/1 and 8/3 are the only partial sums of the Taylor series for e that are also convergents to the simple continued fraction for e. Sondow and Schalm (2008, 2010) proved partial results toward the conjecture. Berndt, Kim, and Zaharescu (2012) proved it in full.

Examples

			1/1, 5/2, 65/24, 163/60, 1957/720, 685/252, 109601/40320, 98641/36288, 9864101/3628800, 13563139/4989600, 260412269/95800320, 8463398743/3113510400, 47395032961/17435658240, 888656868019/326918592000
		

References

  • J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e?, (and a link to the primes 2, 5, 13, 37, 463), part I, in Tapas in Experimental Mathematics, T. Amdeberhan and V. H. Moll, eds., Contemp. Math., vol. 457, American Mathematical Society, Providence, RI, 2008, pp. 273-284.

Crossrefs

Formula

a(2n-1)/a(2n) = A061354(k)/A061355(k) for some k <> 1 and 3.
a(2n-1)/a(2n) <> A007676(k)/A007677(k) for all k.
Previous Showing 21-29 of 29 results.