cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A291203 Number F(n,h,t) of forests of t labeled rooted trees with n vertices such that h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 3, 6, 0, 6, 0, 0, 0, 0, 0, 1, 0, 4, 24, 12, 0, 36, 24, 0, 24, 0, 0, 0, 0, 0, 0, 1, 0, 5, 80, 90, 20, 0, 200, 300, 60, 0, 300, 120, 0, 120, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 240, 540, 240, 30, 0, 1170, 3000, 1260, 120, 0, 3360, 2520, 360, 0, 2520, 720, 0, 720, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 20 2017

Keywords

Comments

Positive elements in column t=1 give A034855.
Elements in rows h=0 give A023531.
Elements in rows h=1 give A059297.
Positive row sums per layer give A235595.
Positive column sums per layer give A061356.

Examples

			n h\t: 0   1   2  3  4 5 : A235595 : A061356          : A000272
-----+-------------------+---------+------------------+--------
0 0  : 1                 :         :                  : 1
-----+-------------------+---------+------------------+--------
1 0  : 0   1             :      1  :   .              :
1 1  : 0                 :         :   1              : 1
-----+-------------------+---------+------------------+--------
2 0  : 0   0   1         :      1  :   .   .          :
2 1  : 0   2             :      2  :   .              :
2 2  : 0                 :         :   2   1          : 3
-----+-------------------+---------+------------------+--------
3 0  : 0   0   0  1      :      1  :   .   .   .      :
3 1  : 0   3   6         :      9  :   .   .          :
3 2  : 0   6             :      6  :   .              :
3 3  : 0                 :         :   9   6   1      : 16
-----+-------------------+---------+------------------+--------
4 0  : 0   0   0  0  1   :      1  :   .   .   .  .   :
4 1  : 0   4  24 12      :     40  :   .   .   .      :
4 2  : 0  36  24         :     60  :   .   .          :
4 3  : 0  24             :     24  :   .              :
4 4  : 0                 :         :  64  48  12  1   : 125
-----+-------------------+---------+------------------+--------
5 0  : 0   0   0  0  0 1 :      1  :   .   .   .  . . :
5 1  : 0   5  80 90 20   :    195  :   .   .   .  .   :
5 2  : 0 200 300 60      :    560  :   .   .   .      :
5 3  : 0 300 120         :    420  :   .   .          :
5 4  : 0 120             :    120  :   .              :
5 5  : 0                 :         : 625 500 150 20 1 : 1296
-----+-------------------+---------+------------------+--------
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t, h) option remember; expand(`if`(n=0 or h=0, x^(t*n), add(
           binomial(n-1, j-1)*j*x^t*b(j-1, 0, h-1)*b(n-j, t, h), j=1..n)))
        end:
    g:= (n, h)-> b(n, 1, h)-`if`(h=0, 0, b(n, 1, h-1)):
    F:= (n, h, t)-> coeff(g(n, h), x, t):
    seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..8);
  • Mathematica
    b[n_, t_, h_] := b[n, t, h] = Expand[If[n == 0 || h == 0, x^(t*n), Sum[
         Binomial[n-1, j-1]*j*x^t*b[j-1, 0, h-1]*b[n-j, t, h], {j, 1, n}]]];
    g[n_, h_] := b[n, 1, h] - If[h == 0, 0, b[n, 1, h - 1]];
    F[n_, h_, t_] := Coefficient[g[n, h], x, t];
    Table[Table[Table[F[n, h, t], {t, 0, n - h}], {h, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Mar 17 2022, after Alois P. Heinz *)

Formula

Sum_{i=0..n} F(n,i,n-i) = A243014(n) = 1 + A038154(n).
Sum_{d=0..n} Sum_{i=0..d} F(n,i,d-i) = A000272(n+1).
Sum_{h=0..n} Sum_{t=0..n-h} t * F(n,h,t) = A089946(n-1) for n>0.
Sum_{h=0..n} Sum_{t=0..n-h} (h+1) * F(n,h,t) = A234953(n+1) for n>0.
Sum_{h=0..n} Sum_{t=0..n-h} (h+1)*(n+1) * F(n,h,t) = A001854(n+1) for n>0.
Sum_{t=0..n-1} F(n,1,t) = A235596(n+1).
F(2n,n,n) = A126804(n) for n>0.
F(n,0,n) = 1 = A000012(n).
F(n,1,1) = n = A001477(n) for n>1.
F(n,n-1,1) = n! = A000142(n) for n>0.
F(n,1,n-1) = A002378(n-1) for n>0.
F(n,2,1) = A000551(n).
F(n,3,1) = A000552(n).
F(n,4,1) = A000553(n).
F(n,1,2) = A001788(n-1) for n>2.
F(n,0,0) = A000007(n).

A350452 Number T(n,k) of endofunctions on [n] with exactly k connected components and no fixed points; triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.

Original entry on oeis.org

1, 0, 0, 1, 0, 8, 0, 78, 3, 0, 944, 80, 0, 13800, 1810, 15, 0, 237432, 41664, 840, 0, 4708144, 1022252, 34300, 105, 0, 105822432, 27098784, 1286432, 10080, 0, 2660215680, 778128336, 47790540, 648900, 945, 0, 73983185000, 24165049920, 1815578160, 36048320, 138600
Offset: 0

Views

Author

Alois P. Heinz, Dec 31 2021

Keywords

Comments

For k >= 2 and p prime, T(p,k) == 0 (mod 4*p*(p-1)). - Mélika Tebni, Jan 20 2023

Examples

			Triangle T(n,k) begins:
  1;
  0;
  0,          1;
  0,          8;
  0,         78,         3;
  0,        944,        80;
  0,      13800,      1810,       15;
  0,     237432,     41664,      840;
  0,    4708144,   1022252,    34300,    105;
  0,  105822432,  27098784,  1286432,  10080;
  0, 2660215680, 778128336, 47790540, 648900, 945;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A000435.
Row sums give A065440.
T(2n,n) gives A001147.

Programs

  • Maple
    c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
          b(n-i)*binomial(n-1, i-1)*x*c(i), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..12);
  • Mathematica
    c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[
         b[n - i]*Binomial[n - 1, i - 1]*x*c[i], {i, 1, n}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n/2}]][b[n]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
  • PARI
    \\ here AS1(n,k) gives associated Stirling numbers of 1st kind.
    AS1(n,k)={(-1)^(n+k)*sum(i=0, k, (-1)^i * binomial(n, i) * stirling(n-i, k-i, 1) )}
    T(n,k) = {if(n==0, k==0, sum(j=k, n, n^(n-j)*binomial(n-1, j-1)*AS1(j,k)))} \\ Andrew Howroyd, Jan 20 2023

Formula

From Mélika Tebni, Jan 20 2023: (Start)
E.g.f. column k: (LambertW(-x) - log(1 + LambertW(-x)))^k / k!.
-Sum_{k=1..n/2} (-1)^k*T(n,k) = A071720(n+1), for n > 0.
-Sum_{k=1..n/2} (-1)^k*T(n,k) / (n-1) = A007830(n-2), for n > 1.
T(n,k) = Sum_{j=k..n} n^(n-j)*binomial(n-1, j-1)*A106828(j, k) for n > 0. (End)

A225465 Triangular array read by rows: T(n, k) is the number of rooted forests on {1, 2, ..., n} in which one tree has been specially designated that contain exactly k trees; n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 9, 12, 3, 64, 96, 36, 4, 625, 1000, 450, 80, 5, 7776, 12960, 6480, 1440, 150, 6, 117649, 201684, 108045, 27440, 3675, 252, 7, 2097152, 3670016, 2064384, 573440, 89600, 8064, 392, 8, 43046721, 76527504, 44641044, 13226976, 2296350, 244944, 15876, 576, 9
Offset: 1

Views

Author

Geoffrey Critzer, May 08 2013

Keywords

Comments

Row sums = 2n*(n+1)^(n-2) = A089946(offset).
The average number of trees in each forest approaches 5/2 as n gets large.
The rows give the coefficients of the derivatives of the Abel polynomials. - Peter Luschny, Feb 22 2025

Examples

			    T(2,1)=2                  T(2,2)=2
  ...1'...   ...2'...   ...1'..2...   ...1..2'...
  ...| ...   ...| ...   ...........   ...........
  ...2 ...   ...1 ...   ...........   ...........
The root node is on top.  The ' indicates the tree which has been specially designated.
Triangle starts:
  [1]        1;
  [2]        2,        2;
  [3]        9,       12,        3;
  [4]       64,       96,       36,        4;
  [5]      625,     1000,      450,       80,       5;
  [6]     7776,    12960,     6480,     1440,     150,      6;
  [7]   117649,   201684,   108045,    27440,    3675,    252,     7;
  [8]  2097152,  3670016,  2064384,   573440,   89600,   8064,   392,   8;
  [9] 43046721, 76527504, 44641044, 13226976, 2296350, 244944, 15876, 576, 9;
		

Crossrefs

Cf. A061356, A089946 (row sums), A000169, A137452.

Programs

  • Mathematica
    Table[Table[Binomial[n - 1, k - 1] n^(n - k) k, {k, 1, n}], {n, 1, 8}] // Grid

Formula

T(n, k) = binomial(n-1, k-1)*n^(n-k)*k = A061356(n, k)*k(offset).
E.g.f.: y*A(x)*exp(y*A(x)) where A(x) is e.g.f. for A000169.
Previous Showing 11-13 of 13 results.