cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A062181 Harmonic mean of digits is 3.

Original entry on oeis.org

3, 26, 33, 62, 236, 244, 263, 326, 333, 362, 424, 442, 623, 632, 1999, 2266, 2336, 2344, 2363, 2434, 2443, 2626, 2633, 2662, 3236, 3244, 3263, 3326, 3333, 3362, 3424, 3442, 3623, 3632, 4234, 4243, 4324, 4342, 4423, 4432, 6226, 6233, 6262, 6323, 6332
Offset: 1

Views

Author

Vladeta Jovovic, Jun 12 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ h = IntegerDigits[n]; If[ Sort[h][[1]] != 0 && Length[h]/Apply[Plus, 1/h] == 3, Print[n]], {n, 1, 10^4}]
  • Python
    from fractions import Fraction
    def hm(n):
      s = str(n)
      return None if '0' in s else len(s)/sum(Fraction(1, int(d)) for d in s)
    def aupto(limit): return [m for m in range(limit+1) if hm(m) == 3]
    print(aupto(6332)) # Michael S. Branicky, Mar 26 2021

Extensions

More terms from Henry Bottomley, Jul 25 2001

A062184 Harmonic mean of digits is 6.

Original entry on oeis.org

6, 66, 488, 666, 848, 884, 3999, 4688, 4868, 4886, 6488, 6666, 6848, 6884, 8468, 8486, 8648, 8684, 8846, 8864, 9399, 9939, 9993, 36999, 38888, 39699, 39969, 39996, 44999, 46688, 46868, 46886, 48668, 48686, 48866, 49499, 49949, 49994, 63999
Offset: 1

Views

Author

Vladeta Jovovic, Jun 12 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ h = IntegerDigits[n]; If[ Sort[h][[1]] != 0 && Length[h]/Apply[Plus, 1/h] == 6, Print[n]], {n, 1, 10^6}]

Extensions

More terms from Robert G. Wilson v, Aug 08 2001

A190296 Numbers n such that the mean of the digits in n is an integer m and n is divisible by m.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 15, 20, 22, 24, 33, 40, 42, 44, 48, 51, 55, 60, 66, 77, 80, 84, 88, 99, 102, 108, 111, 114, 117, 120, 126, 132, 135, 144, 150, 153, 156, 162, 171, 180, 192, 195, 198, 201, 204, 207, 210, 216, 222, 225, 228, 234, 240, 243, 252
Offset: 1

Views

Author

Jaroslav Krizek, May 07 2011

Keywords

Comments

Subsequence of A061383. Supersequence of A010785.

Examples

			132 is in the sequence because it is divisible by the arithmetic mean of its digits, namely 2.
		

Programs

  • Mathematica
    okQ[n_] := Module[{m = Mean[IntegerDigits[n]]}, IntegerQ[m] && Divisible[n, m]]; Select[Range[500], okQ] (* T. D. Noe, May 09 2011 *)

Extensions

Corrected and extended by T. D. Noe, May 09 2011

A350211 Numbers k such that the arithmetic mean of the digits of k! is an integer.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 12, 26, 28, 32, 59, 262, 391, 533, 579
Offset: 1

Views

Author

Zachary M Franco, Dec 19 2021

Keywords

Comments

A heuristic argument suggests that this short list is complete. By Stirling's approximation, n! has order n*log(n) digits of which n/4 are terminal zeros. If the remaining digits are random, the mean will be just below 4.5. For n > 6, n! and also its digits sum are divisible by 9. 12! is the only factorial with 9 digits. The others have 27, 30, 36, 81, 522, 846, 1224, and 1350 digits, respectively.

Examples

			4 is a term because 4! = 24 and (2+4)/2 = 3 is an integer.
		

Crossrefs

Programs

  • Maple
    q:= n-> (f-> (add(i, i=convert(f, base, 10))/length(f))::integer)(n!):
    select(q, [$0..1000])[];  # Alois P. Heinz, Dec 19 2021
  • Mathematica
    Do[If[IntegerQ[Mean[IntegerDigits[n!]]], Print[n, " ", Mean[IntegerDigits[n!]]]], {n, 1, 100000}]
  • PARI
    isok(k) = my(d=digits(k!)); (vecsum(d) % #d) == 0; \\ Michel Marcus, Dec 19 2021

A362038 A list of lists where T(n,k) is the smallest n-digit number whose digits have arithmetic mean k, for 1 <= k <= 9.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 39, 59, 79, 99, 102, 105, 108, 129, 159, 189, 399, 699, 999, 1003, 1007, 1029, 1069, 1199, 1599, 1999, 5999, 9999, 10004, 10009, 10059, 10199, 10699, 12999, 17999, 49999, 99999, 100005, 100029, 100089
Offset: 1

Views

Author

Ctibor O. Zizka, Apr 15 2023

Keywords

Comments

Subsequence of A061383. The sum of digits of T(n,k) is n*k and they are placed with the first at least 1 and the rest packed as small as possible.

Examples

			Lists begin:
         k=1     2     3     4     5     6     7     8     9
      +-----------------------------------------------------
  n=1 |    1,    2,    3,    4,    5,    6,    7,    8,    9;
  n=2 |   11,   13,   15,   17,   19,   39,   59,   79,   99;
  n=3 |  102,  105,  108,  129,  159,  189,  399,  699,  999;
  n=4 | 1003, 1007, 1029, 1069, 1199, 1599, 1999, 5999, 9999;
        ...
T(3,7) = 399 has digit mean (3+9+9)/3 = 7.
		

Crossrefs

Previous Showing 31-35 of 35 results.