cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 52 results. Next

A375735 First differences of non-prime-powers (inclusive).

Original entry on oeis.org

4, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2024

Keywords

Comments

Inclusive means 1 is a prime-power but not a non-prime-power.
Non-prime-powers (inclusive) are listed by A024619.

Examples

			The 5th non-prime-power (inclusive) is 15, and the 6th is 18, so a(5) = 3.
		

Crossrefs

For perfect powers (A001597) we have the latter terms of A053289.
For nonprime numbers (A002808) we have the latter terms of A073783.
For squarefree numbers (A005117) we have the latter terms of A076259.
First differences of A024619.
For prime-powers (A246655) we have the latter terms of A057820.
Essentially the same as the exclusive version, A375708.
Positions of 1's are A375713(n) - 1.
For runs of non-prime-powers:
- length: A110969
- first: A373676
- last: A373677
- sum: A373678
A000040 lists all of the primes, first differences A001223.
A000961 lists prime-powers (inclusive).
A007916 lists non-perfect-powers, first differences A375706.
A013929 lists the nonsquarefree numbers, first differences A078147.
A246655 lists prime-powers (exclusive).
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Prime-power anti-runs: A373576, min A120430, max A006549, length A373671.
Non-prime-power anti-runs: A373679, min A373575, max A255346, len A373672.

Programs

  • Mathematica
    Differences[Select[Range[2,100],!PrimePowerQ[#]&]]
  • Python
    from itertools import count
    from sympy import primepi, integer_nthroot, primefactors
    def A375735(n):
        def f(x): return int(n+1+sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return next(i for i in count(m+1) if len(primefactors(i))>1)-m # Chai Wah Wu, Sep 10 2024

A378032 a(1) = a(2) = 1; a(n>2) is the greatest nonsquarefree number < prime(n).

Original entry on oeis.org

1, 1, 4, 4, 9, 12, 16, 18, 20, 28, 28, 36, 40, 40, 45, 52, 56, 60, 64, 68, 72, 76, 81, 88, 96, 100, 100, 104, 108, 112, 126, 128, 136, 136, 148, 150, 156, 162, 164, 172, 176, 180, 189, 192, 196, 198, 208, 220, 225, 228, 232, 236, 240, 250, 256, 261, 268, 270
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2024

Keywords

Examples

			The terms together with their prime indices begin:
    1: {}
    1: {}
    4: {1,1}
    4: {1,1}
    9: {2,2}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   28: {1,1,4}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   40: {1,1,1,3}
   45: {2,2,3}
   52: {1,1,6}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
   68: {1,1,7}
   72: {1,1,1,2,2}
		

Crossrefs

Terms appearing twice are A061351 + 1.
For prime-powers we have A065514 (diffs A377781), opposite A345531 (diffs A377703).
For squarefree we have A112925 (differences A378038).
The opposite for squarefree is A112926 (differences A378037).
The opposite is A377783 (union A378040), restriction of A120327 (differences A378039).
Restriction of A378033, which has differences A378036.
The first-differences are A378034, opposite A377784.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes (sums A337030), zeros A068360.
A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361.
A070321 gives the greatest squarefree number up to n.
A377046 encodes k-differences of nonsquarefree numbers, zeros A377050.

Programs

  • Mathematica
    Table[NestWhile[#-1&,Prime[n],#>1&&SquareFreeQ[#]&],{n,100}]

Formula

a(n) = A378033(prime(n)).

A071403 Which squarefree number is prime? a(n)-th squarefree number equals n-th prime.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 12, 13, 16, 18, 20, 24, 27, 29, 31, 33, 37, 38, 42, 45, 46, 50, 52, 56, 61, 62, 64, 67, 68, 71, 78, 81, 84, 86, 92, 93, 96, 100, 103, 105, 109, 110, 117, 118, 121, 122, 130, 139, 141, 142, 145, 149, 150, 154, 158, 162, 166, 167, 170, 172, 174, 180
Offset: 1

Views

Author

Labos Elemer, May 24 2002

Keywords

Comments

Also the number of squarefree numbers <= prime(n). - Gus Wiseman, Dec 08 2024

Examples

			a(25)=61 because A005117(61) = prime(25) = 97.
From _Gus Wiseman_, Dec 08 2024: (Start)
The squarefree numbers up to prime(n) begin:
n = 1  2  3  4   5   6   7   8   9  10
    ----------------------------------
    2  3  5  7  11  13  17  19  23  29
    1  2  3  6  10  11  15  17  22  26
       1  2  5   7  10  14  15  21  23
          1  3   6   7  13  14  19  22
             2   5   6  11  13  17  21
             1   3   5  10  11  15  19
                 2   3   7  10  14  17
                 1   2   6   7  13  15
                     1   5   6  11  14
                         3   5  10  13
                         2   3   7  11
                         1   2   6  10
                             1   5   7
                                 3   6
                                 2   5
                                 1   3
                                     2
                                     1
The column-lengths are a(n).
(End)
		

Crossrefs

The strict version is A112929.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A070321 gives the greatest squarefree number up to n.
Other families: A014689, A027883, A378615, A065890.
Squarefree numbers between primes: A061398, A068360, A373197, A373198, A377430, A112925, A112926.
Nonsquarefree numbers: A057627, A378086, A061399, A068361, A120327, A377783, A378032, A378033.

Programs

  • Mathematica
    Position[Select[Range[300], SquareFreeQ], ?PrimeQ][[All, 1]] (* _Michael De Vlieger, Aug 17 2023 *)
  • PARI
    lista(nn)=sqfs = select(n->issquarefree(n), vector(nn, i, i)); for (i = 1, #sqfs, if (isprime(sqfs[i]), print1(i, ", "));); \\ Michel Marcus, Sep 11 2013
    
  • PARI
    a(n,p=prime(n))=sum(k=1, sqrtint(p), p\k^2*moebius(k)) \\ Charles R Greathouse IV, Sep 13 2013
    
  • PARI
    a(n,p=prime(n))=my(s); forfactored(k=1, sqrtint(p), s+=p\k[1]^2*moebius(k)); s \\ Charles R Greathouse IV, Nov 27 2017
    
  • PARI
    first(n)=my(v=vector(n),pr,k); forsquarefree(m=1,n*logint(n,2)+3, k++; if(m[2][,2]==[1]~, v[pr++]=k; if(pr==n, return(v)))) \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from math import isqrt
    from sympy import prime, mobius
    def A071403(n): return (p:=prime(n))+sum(mobius(k)*(p//k**2) for k in range(2,isqrt(p)+1)) # Chai Wah Wu, Jul 20 2024

Formula

A005117(a(n)) = A000040(n) = prime(n).
a(n) ~ (6/Pi^2) * n log n. - Charles R Greathouse IV, Nov 27 2017
a(n) = A013928(A008864(n)). - Ridouane Oudra, Oct 15 2019
From Gus Wiseman, Dec 08 2024: (Start)
a(n) = A112929(n) + 1.
a(n+1) - a(n) = A373198(n) = A061398(n) - 1.
(End)

A377783 Least nonsquarefree number > prime(n).

Original entry on oeis.org

4, 4, 8, 8, 12, 16, 18, 20, 24, 32, 32, 40, 44, 44, 48, 54, 60, 63, 68, 72, 75, 80, 84, 90, 98, 104, 104, 108, 112, 116, 128, 132, 140, 140, 150, 152, 160, 164, 168, 175, 180, 184, 192, 196, 198, 200, 212, 224, 228, 232, 234, 240, 242, 252, 260, 264, 270, 272
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2024

Keywords

Comments

No term appears more than twice. Proof: This would require at least 4 consecutive squarefree numbers (3 primes and at least 1 squarefree number between them). But we cannot have more than 3 consecutive squarefree numbers, because otherwise one of them must be divisible by 4, hence not squarefree.

Examples

			The third prime is 5, which is followed by 6, 7, 8, 9, ..., of which 8 is the first nonsquarefree term, so a(3) = 8.
The terms together with their prime indices begin:
    4: {1,1}
    4: {1,1}
    8: {1,1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   32: {1,1,1,1,1}
   40: {1,1,1,3}
   44: {1,1,5}
   44: {1,1,5}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   68: {1,1,7}
   72: {1,1,1,2,2}
		

Crossrefs

For squarefree we have A112926 (diffs A378037), opposite A112925 (diffs A378038).
Restriction to the primes of A120327, which has first differences A378039.
For prime-power instead of nonsquarefree (and primes + 1) we have A345531.
First differences are A377784.
The opposite is A378032 (diffs A378034), restriction of A378033 (diffs A378036).
The union is A378040.
Terms appearing only once are A378082.
Terms appearing twice are A378083.
Nonsquarefree numbers that are missing are A378084.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A070321 gives the greatest squarefree number up to n.

Programs

  • Mathematica
    Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}]

Formula

a(n) = A120327(prime(n)).

Extensions

Proof suggested by Amiram Eldar.

A375707 First differences minus 1 of nonsquarefree numbers.

Original entry on oeis.org

3, 0, 2, 3, 1, 1, 3, 0, 1, 0, 3, 3, 3, 3, 0, 2, 0, 0, 1, 1, 1, 3, 2, 0, 3, 3, 2, 0, 3, 0, 2, 3, 1, 1, 3, 1, 0, 0, 3, 3, 3, 3, 0, 2, 0, 2, 0, 0, 1, 3, 2, 0, 3, 3, 2, 0, 1, 1, 0, 2, 3, 1, 1, 3, 0, 1, 0, 2, 0, 3, 3, 3, 0, 2, 3, 1, 1, 3, 2, 0, 3, 3, 3, 3, 0, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2024

Keywords

Comments

Also the number of squarefree numbers between the nonsquarefree numbers A013929(n) and A013929(n+1).
Delete all 0's to get A120992.
The image is {0,1,2,3}.
Add 1 to all terms for A078147.

Examples

			The runs of squarefree numbers begin:
  (5,6,7)
  ()
  (10,11)
  (13,14,15)
  (17)
  (19)
  (21,22,23)
  ()
  (26)
  ()
  (29,30,31)
  (33,34,35)
		

Crossrefs

Positions of 0, 1, 2, 3 are A375709, A375710, A375711, A375712. This is a set partition of the positive integers into four blocks.
For runs of squarefree numbers:
- length: A120992, anti A373127
- min: A072284, anti A373408
- max: A373415, anti A007674
- sum: A373413, anti A373411
For runs of nonsquarefree numbers:
- length: A053797, anti A373409
- min: A053806, anti A373410
- max: A376164, anti A068781
- sum: A373414, anti A373412
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A046933 counts composite numbers between consecutive primes.
A073784 counts primes between consecutive composite numbers.
A093555 counts non-prime-powers between consecutive prime-powers.

Programs

  • Mathematica
    Differences[Select[Range[100],!SquareFreeQ[#]&]]-1
  • PARI
    lista(nmax) = {my(prev = 4); for (n = 5, nmax, if(!issquarefree(n), print1(n - prev - 1, ", "); prev = n));} \\ Amiram Eldar, Sep 17 2024

Formula

Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = 6/(Pi^2-6) = 1.550546... . - Amiram Eldar, Sep 17 2024

A375927 Numbers k such that A005117(k+1) - A005117(k) = 1. In other words, the k-th squarefree number is 1 less than the next.

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 10, 14, 15, 18, 19, 21, 22, 24, 25, 27, 28, 30, 35, 36, 38, 40, 41, 43, 44, 46, 48, 49, 51, 53, 54, 58, 59, 62, 63, 65, 66, 68, 69, 71, 72, 74, 76, 79, 80, 82, 84, 85, 87, 88, 90, 94, 96, 97, 101, 102, 105, 107, 108, 110, 111, 113, 114, 116
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2024

Keywords

Comments

The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p^2-1)) = 0.53071182... (A065469). - Amiram Eldar, Sep 15 2024

Examples

			The squarefree numbers are 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ... which first increase by one after terms 1, 2, 4, 5, ...
		

Crossrefs

Positions of 1's in A076259.
For prime-powers (A246655) we have A375734.
First differences are A373127.
For nonsquarefree instead of squarefree we have A375709.
For nonprime numbers we have A375926, differences A373403.
For composite numbers we have A375929.
The complement is A375930, differences A120992.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],SquareFreeQ[#]&]],1]
  • PARI
    lista(kmax) = {my(is1 = 1, is2, c = 1); for(k = 2, kmax, is2 = issquarefree(k); if(is2, c++); if(is1 && is2, print1(c-1, ", ")); is1 = is2);} \\ Amiram Eldar, Sep 15 2024

A378036 First differences of A378033 (greatest positive integer < n that is 1 or nonsquarefree).

Original entry on oeis.org

0, 0, 3, 0, 0, 0, 4, 1, 0, 0, 3, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 4, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 1, 0, 0, 3, 1, 1, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 3, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 3, 1, 0, 0, 0, 4, 1, 0, 0, 3, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 4, 0, 2, 1, 1, 0, 0, 0, 4, 0, 0, 0, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2024

Keywords

Crossrefs

Positions of 0 are A005117 - 1, complement A013929 - 1.
Sums for squarefree numbers are A070321 (restriction A112925).
The restricted opposite is A377784, differences of A377783 (union A378040).
First-differences of A378033.
The restriction is A378034, differences of A378032.
The restricted opposite for squarefree is A378037, differences of A112926.
The opposite is A378039, differences of A120327 (union A162966).
For squarefree numbers we have A378085, restriction A378038.
The opposite for squarefree is A378087, differences of A067535.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259, seconds A376590.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes (sums A337030), zeros A068360.
A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361.
A377046 encodes k-differences of nonsquarefree numbers, zeros A377050.

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,n,#>1&&SquareFreeQ[#]&],{n,100}]]
  • PARI
    A378033(n) = if(n<=3, 1, forstep(k=n, 0, -1, if(!issquarefree(k), return(k))));
    A378036(n) = (A378033(1+n)-A378033(n)); \\ Antti Karttunen, Jan 28 2025

Formula

a(prime(n)) = A378034(n).

Extensions

Data section extended to a(107) by Antti Karttunen, Jan 28 2025

A378037 First differences of A112926 (smallest squarefree integer > prime(n)).

Original entry on oeis.org

2, 1, 4, 3, 1, 5, 2, 5, 4, 3, 5, 4, 4, 5, 4, 6, 1, 7, 4, 1, 8, 3, 6, 10, 1, 3, 4, 1, 4, 15, 4, 5, 3, 10, 3, 4, 7, 5, 4, 7, 1, 11, 1, 5, 2, 12, 13, 3, 1, 5, 6, 5, 7, 5, 7, 6, 2, 5, 4, 3, 10, 14, 4, 1, 4, 16, 5, 10, 4, 1, 8, 8, 4, 7, 4, 5, 8, 4, 8, 11, 1, 11, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2024

Keywords

Crossrefs

First differences of A112926, restriction of A067535, differences A378087.
For prime powers we have A377703.
The nonsquarefree version is A377784 (differences of A377783), restriction of A378039.
The nonsquarefree opposite is A378034, first differences of A378032.
The opposite is A378038, differences of A112925.
The unrestricted opposite is A378085 except first term, differences of A070321.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&,Prime[n]+1,!SquareFreeQ[#]&],{n,100}]]

A378038 First differences of A112925 = greatest squarefree number < prime(n).

Original entry on oeis.org

1, 1, 3, 4, 1, 4, 2, 5, 4, 4, 5, 4, 3, 4, 5, 7, 1, 7, 4, 1, 7, 4, 5, 8, 2, 5, 4, 1, 4, 12, 7, 4, 4, 8, 3, 6, 6, 5, 4, 8, 1, 11, 1, 4, 2, 13, 12, 4, 1, 4, 7, 1, 10, 6, 7, 5, 2, 5, 4, 4, 9, 14, 5, 1, 3, 16, 5, 11, 1, 2, 9, 8, 5, 6, 5, 4, 9, 4, 8, 11, 1, 11, 1, 7
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2024

Keywords

Crossrefs

First differences of A112925, restriction of A070321, differences A378085.
For prime powers we have A377781, opposite A377703.
The nonsquarefree opposite is A377784 (differences of A377783), restriction of A378039.
The nonsquarefree version is A378034, first differences of A378032.
The opposite is A378037, differences of A112926.
The unrestricted opposite is A378087, differences of A067535.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,Prime[n]-1,!SquareFreeQ[#]&],{n,100}]]

A373199 Least k such that the k-th maximal run of nonsquarefree numbers has length n. Position of first appearance of n in A053797.

Original entry on oeis.org

1, 2, 13, 68, 241, 6278, 61921, 311759, 2530539
Offset: 1

Views

Author

Gus Wiseman, Jun 08 2024

Keywords

Comments

A run of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by one. The a(n)-th run of nonsquarefree numbers begins with A045882 = A051681, subset of A053806.

Examples

			The maximal runs of nonsquarefree numbers begin:
   4
   8   9
  12
  16
  18
  20
  24  25
  27  28
  32
  36
  40
  44  45
  48  49  50
  52
  54
  56
  60
  63  64
The a(n)-th rows are:
     4
     8     9
    48    49    50
   242   243   244   245
   844   845   846   847   848
For example, (48, 49, 50) is the first maximal run of 3 nonsquarefree numbers, so a(3) = 13.
		

Crossrefs

For composite instead of nonsquarefree we have A073051.
The version for squarefree runs is A373128.
For prime instead of nonsquarefree we have A373400.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    seq=Length/@Split[Select[Range[10000],!SquareFreeQ[#]&],#1+1==#2&];
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[y,Range[#]]&];
    Table[Position[seq,i][[1,1]],{i,spna[seq]}]
Previous Showing 11-20 of 52 results. Next