cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A171243 Riordan array (f(x), x*g(x)), f(x) is the g.f. of A126952, g(x) is the g.f. of A117641.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 21, 6, 1, 1, 93, 25, 7, 1, 1, 421, 112, 29, 8, 1, 1, 1937, 510, 132, 33, 9, 1, 1, 9017, 2357, 606, 153, 37, 10, 1, 1, 42349, 11009, 2819, 709, 175, 41, 11, 1, 1, 200277, 51840, 13233, 3324, 819, 198, 45, 12, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 06 2009

Keywords

Comments

Expansion of row sums of T_(x,3), T_(x,y) defined in A039599.
Matrix product P^3 * Q * P^(-3), where P denotes Pascal's triangle A007318 and Q denotes A061554 (formed from P by sorting the rows into descending order). Cf. A158793 and A158815. - Peter Bala, Jul 13 2021

Examples

			Triangle begins:
    1;
    1,   1;
    5,   1,  1;
   21,   6,  1, 1;
   93,  25,  7, 1, 1;
  421, 112, 29, 8, 1, 1;
  ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A126952(n), A126568(n), A026375(n), A026378(n+1), A000351(n) for x = 0,1,2,3,4 respectively.

A126125 Triangle equal to the matrix square of the triangle binomial(n,floor((n+1-(-1)^(n+k)*(k+1))/2)).

Original entry on oeis.org

1, 2, 1, 5, 2, 1, 11, 7, 2, 1, 27, 15, 9, 2, 1, 61, 44, 19, 11, 2, 1, 149, 97, 65, 23, 13, 2, 1, 342, 267, 141, 90, 27, 15, 2, 1, 835, 599, 433, 193, 119, 31, 17, 2, 1, 1939, 1598, 956, 655, 253, 152, 35, 19, 2, 1, 4740, 3631
Offset: 0

Views

Author

Gary W. Adamson, Dec 17 2006

Keywords

Comments

The triangular view of A061554 is:
1;
1, 1;
2, 1, 1;
3, 3, 1, 1;
6, 4, 4, 1, 1;
The matrix square of this (infinite) triangle is this triangle here.

Examples

			First few rows of the triangle are:
1;
2, 1;
5, 2, 1;
11, 7, 2, 1;
27, 15, 9, 2, 1;
61, 44, 19, 11, 2, 1;
..,
		

Crossrefs

Cf. A061554, A127358 (row sums).

Programs

  • Maple
    A061554 := proc(n,k) local m ; m := floor((n+1)/2 - (-1)^(n-k)*(k+1)/2) ; binomial(n,m) ; end proc:
    A126125 := proc(n,k) add(A061554(n,j)*A061554(j,k),j=k..n) ; end proc: # R. J. Mathar, Sep 17 2011

A298637 Triangular array of a Catalan number variety: T(n,k) is the number of words consisting of n parentheses containing k well-balanced pairs.

Original entry on oeis.org

1, 2, 3, 1, 4, 4, 5, 9, 2, 6, 16, 10, 7, 25, 27, 5, 8, 36, 56, 28, 9, 49, 100, 84, 14, 10, 64, 162, 192, 84, 11, 81, 245, 375, 270, 42, 12, 100, 352, 660, 660, 264, 13, 121, 486, 1078, 1375, 891, 132, 14, 144, 650, 1664, 2574, 2288, 858, 15, 169, 847, 2457, 4459, 5005, 3003, 429
Offset: 0

Views

Author

Marko Riedel, Jan 23 2018

Keywords

Comments

A well-balanced run in a word of parentheses is a maximal run where every initial segment of the run has at least as many left parentheses as right ones and the number of open parentheses is the same as that of closed ones. The variable k in the sequence definition is the sum of the count of balanced pairs in all maximal runs in the word and n is the length of the word. Runs are maximal substrings counted by ordinary Catalan numbers.

Examples

			The word ))))(()(()))((() contains five well-balanced pairs of parentheses.
Triangular array T(n,k) begins:
   1;
   2;
   3,   1;
   4,   4;
   5,   9,   2;
   6,  16,  10;
   7,  25,  27,   5;
   8,  36,  56,  28;
   9,  49, 100,  84,  14;
  10,  64, 162, 192,  84;
  11,  81, 245, 375, 270,  42;
  12, 100, 352, 660, 660, 264;
		

Crossrefs

Row sums give A000079.
T(2n,n) gives A000108.
T(2n+1,n) gives A068875. T(n,1) gives A000290. T(2n,2) gives A280089.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i>0, x, 1)*b(n-1, max(0, i-1))+b(n-1, i+1)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..16);  # Alois P. Heinz, Jan 23 2018
  • Mathematica
    Table[((n + 1 - 2 k)^2/(n + 1)) Binomial[n + 1, k], {n, 0, 17}, {k, 0, Floor[n/2]}] // Flatten (* Michael De Vlieger, Jan 23 2018 *)

Formula

T(n,k) = ((n+1-2*k)^2/(n+1))*C(n+1,k) where 0 <= k <= floor(n/2).
Bivariate o.g.f. is C(u*z^2)/(1-z*C(u*z^2))^2 with u counting pairs of parentheses and z counting total word length where C(z) = (1-sqrt(1-4*z))/(2*z) is the o.g.f. of the Catalan numbers.
T(2*k,k) = C(k), the k-th Catalan number.
T(n,0) = n+1 by construction.

A335322 Triangle read by rows: T(n, k) = binomial(n, floor((n+k+1)/2)) with k <= n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 10, 5, 5, 1, 1, 15, 15, 6, 6, 1, 1, 35, 21, 21, 7, 7, 1, 1, 56, 56, 28, 28, 8, 8, 1, 1, 126, 84, 84, 36, 36, 9, 9, 1, 1, 210, 210, 120, 120, 45, 45, 10, 10, 1, 1, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1, 792, 792, 495, 495, 220, 220, 66, 66, 12, 12, 1, 1
Offset: 1

Views

Author

Stefano Spezia, May 31 2020

Keywords

Comments

T(n, k) is a tight upper bound of the cardinality of an intersecting Sperner family or antichain of the set {1, 2,..., n}, where every collection of pairwise independent subsets is characterized by an intersection of cardinality at least k (see Theorem 1.3 in Wong and Tay).
Equals A061554 with the first row of the array (resp. the first column of the triangle) removed. - Georg Fischer, Jul 26 2023

Examples

			The triangle T(n, k) begins
n\k|  1   2   3   4   5   6   7   8
---+-------------------------------
1  |  1
2  |  1   1
3  |  3   1   1
4  |  4   4   1   1
5  | 10   5   5   1   1
6  | 15  15   6   6   1   1
7  | 35  21  21   7   7   1   1
8  | 56  56  28  28   8   8   1   1
...
		

Crossrefs

Cf. A037951 (k=3), A037952 (k=1), A037953 (k=5), A037954 (k=7), A037955 (k=2), A037956 (k=4), A037957 (k=6), A037958 (k=8), A045621 (row sums).

Programs

  • Mathematica
    T[n_,k_]:=Binomial[n,Floor[(n+k+1)/2]]; Table[T[n,k],{n,12},{k,n}]//Flatten
  • PARI
    T(n, k) = binomial(n, (n+k+1)\2);
    vector(10, n, vector(n, k, T(n, k))) \\ Michel Marcus, Jun 01 2020

Formula

T(n, k) = A007318(n, A004526(n+k+1)) with k <= n.
Previous Showing 41-44 of 44 results.