cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A195591 Number of ways to place 3n nonattacking kings on a vertical cylinder 6 X 2n.

Original entry on oeis.org

16, 90, 344, 1082, 3036, 7918, 19648, 47058, 109796, 251126, 565512, 1257754, 2769196, 6046014, 13107536, 28246370, 60555636, 129237382, 274727320, 581960106, 1228931516, 2587886030, 5435818464, 11391730162, 23823647236, 49727668758, 103616086568
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 21 2011

Keywords

Comments

Vertical cylinder: a chessboard where it is supposed that the columns 1 and 6 are in contact (number of columns = 6, number of rows = 2n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-13,12,-4},{16,90,344,1082},30] (* Harvey P. Dale, Nov 15 2021 *)

Formula

Recurrence: a(n) = -4*a(n-4) + 12*a(n-3) - 13*a(n-2) + 6*a(n-1).
G.f.: x*(1+10*x+7*x^2)/((x-1)^2*(2*x-1)^2).
a(n) = (31*n - 65)*2^n + 18*n + 66.
E.g.f.: exp(x)*(48*(1 - exp(x)) + x*(18 + 31*exp(x))). - Stefano Spezia, Aug 31 2025

A321614 Number of nonequivalent ways to place 2n nonattacking kings on a 4 X 2n chessboard under all symmetry operations of the rectangle.

Original entry on oeis.org

1, 4, 23, 106, 473, 1939, 7618, 28703, 105112, 375597, 1316944, 4544124, 15474559, 52108212, 173799309, 574908646, 1888125243, 6162032375, 19998659760, 64584817367, 207655073310, 665017743665
Offset: 0

Views

Author

Anton Nikonov, Dec 19 2018

Keywords

Comments

A maximum of 2n nonattacking kings can be placed on a 4 X 2n chessboard.
Number of nonequivalent ways of placing 2n 2 X 2 tiles in an 5 X (2n+1) rectangle under all symmetry operations of the rectangle. - Andrew Howroyd, Dec 21 2018

Crossrefs

Formula

a(n) = A231145(2*n+1, 2n).
Conjectures from Colin Barker, Dec 22 2018: (Start)
G.f.: (1 - 2*x)*(1 - 6*x + 17*x^2 - 18*x^3 - 2*x^4 + 7*x^5 + 6*x^6 - 3*x^7) / ((1 - x)^2*(1 - 3*x)^2*(1 - 3*x + x^2)*(1 - x - x^2)*(1 - 3*x^2)).
a(n) = 12*a(n-1) - 54*a(n-2) + 98*a(n-3) + 17*a(n-4) - 346*a(n-5) + 505*a(n-6) - 210*a(n-7) - 120*a(n-8) + 126*a(n-9) - 27*a(n-10) for n>9.
(End)
Previous Showing 11-12 of 12 results.