A342681 Primes which, when added to their reversals, produce palindromic primes.
241, 443, 613, 641, 811, 20011, 20047, 20051, 20101, 20161, 20201, 20347, 20441, 20477, 21001, 21157, 21211, 21377, 21467, 22027, 22031, 22147, 22171, 22247, 22367, 23017, 23021, 23131, 23357, 23417, 23447, 24007, 24121, 24151, 24407, 25031, 25111, 25117, 25121, 26021, 26107, 26111, 26417, 27011, 27407, 28001
Offset: 1
Examples
241 is a prime number. The sum with its reverse is 383 = 241+142, which is a palindromic prime. Thus, 241 is in this sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(10^6) | IsPrime(t) and Intseq(t) eq Reverse(Intseq(t)) where t is p+Seqint(Reverse(Intseq(p)))]; // Bruno Berselli, Mar 23 2021
-
Maple
revdigs:= proc(n) local i,L; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: ispali:= proc(n) local L; L:= convert(n,base,10); andmap(t -> L[t]=L[-t], [$1..nops(L)/2]) end proc: filter:= proc(t) local r; r:= t + revdigs(t); ispali(r) and isprime(r); end proc: select(filter, [seq(ithprime(i),i=1..10000)]); # Robert Israel, Mar 24 2021
-
Mathematica
Select[Range[30000], PrimeQ[#] && PrimeQ[# + IntegerReverse[#]] && PalindromeQ[# + IntegerReverse[#]] &]
-
PARI
isok(p) = my(q); isprime(p) && isprime(q=p+fromdigits(Vecrev(digits(p)))) && (q==fromdigits(Vecrev(digits(q)))); \\ Michel Marcus, Mar 18 2021
-
Python
from sympy import isprime, primerange def ok(p): t = p + int(str(p)[::-1]); strt = str(t) return strt == strt[::-1] and isprime(t) print([p for p in primerange(1, 28002) if ok(p)]) # Michael S. Branicky, Mar 18 2021
Comments