cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A319510 Rank of elliptic curve y^2 = x^3 - n^2 * x.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 2, 0, 0, 1, 1, 1, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0
Offset: 1

Views

Author

Seiichi Manyama, Sep 24 2018

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = ellanalyticrank(ellinit([0, 0, 0, -n^2, 0]))[1]}

Formula

a(n) = A060952(n^2).
a(A003273(n)) > 0.
a(A194687(n)) = n.
Empirical: a(n) = a(4*n). - Jose Aranda, Jul 02 2024

A062693 Squarefree n such that the elliptic curve n*y^2 = x^3 - x arising in the "congruent number" problem has rank 3.

Original entry on oeis.org

1254, 2605, 2774, 3502, 4199, 4669, 4895, 6286, 6671, 7230, 7766, 8005, 9015, 9430, 9654, 10199, 10549, 11005, 11029, 12166, 12270, 12534, 12935, 13317, 14965, 15655, 16151, 16206, 16887, 17958, 18221, 19046, 19726, 20005, 20366
Offset: 0

Views

Author

Noam D. Elkies, Jul 04 2001

Keywords

Comments

Conjectural, as detailed in the pages from which it is extracted (see the first few links at the web site mentioned for details), but the conjecture is supported by much numerical and theoretical evidence.

Crossrefs

Programs

  • PARI
    r(n)=ellanalyticrank(ellinit([0,0,0,-n^2,0]))[1]
    for(n=1,1e4,if(r(n)==3,print1(n", "))) \\ Charles R Greathouse IV, Sep 01 2011

A274264 Number of squarefree integers congruent to {5, 6, 7} mod 8 <= 10^n.

Original entry on oeis.org

3, 33, 308, 3050, 30405, 303979, 3039648, 30396356, 303963597, 3039635407, 30396354916, 303963551200, 3039635509025, 30396355093247, 303963550927371, 3039635509273730, 30396355092701463, 303963550927001730
Offset: 1

Views

Author

Frank M Jackson, Jun 16 2016

Keywords

Comments

Empirically, the limit of a(n)/10^n tends to 3/Pi^2 (A104141) and implies that the asymptotic density of squarefree numbers congruent to {5, 6, 7} mod 8 is half that of the asymptotic density of all squarefree integers (A071172). There is a slight bias towards more squarefree numbers congruent to {5, 6, 7} mod 8 that can be argued heuristically as {1, 2, 3} mod 8 contains a square residue and its equivalence class should contain less squarefree numbers.
Also it has been shown, conditional on the Birch Swinnerton-Dyer conjecture, that all squarefree integers congruent to {5, 6, 7} mod 8 (A273929) are primitive (squarefree) congruent numbers (A006991). However, this property applies only sparsely to squarefree integers congruent to {1, 2, 3} mod 8 (A062695).

Crossrefs

Programs

  • Mathematica
    Table[Length@Select[Range[10^n], MemberQ[{5, 6, 7}, Mod[#, 8]]&& SquareFreeQ[#] &], {n, 1, 8}]

Extensions

a(10)-a(11) from Giovanni Resta, Jun 17 2016
a(7) corrected and a(12)-a(18) added by Hiroaki Yamanouchi, Dec 25 2016

A062694 Squarefree n such that the elliptic curve n*y^2 = x^3 - x arising in the "congruent number" problem has rank 3 and nontrivial SHA[2].

Original entry on oeis.org

42486, 68839, 80189, 82205, 83845, 88502, 92045, 112326, 116645, 125749, 142222, 182005, 199805, 202742, 270805, 275286, 282613, 287246, 295222, 342205, 372742, 392502, 440453, 450079, 473263, 477581, 487302, 488047
Offset: 0

Views

Author

Noam D. Elkies, Jul 04 2001

Keywords

Comments

Conjectural, as detailed in the pages from which it is extracted (see the first few links at the web site mentioned for details), but the conjecture is supported by much numerical and theoretical evidence.

Crossrefs

A274043 Number of squarefree integers congruent to {1, 2, 3} mod 8 <= 10^n.

Original entry on oeis.org

4, 28, 300, 3033, 30389, 303947, 3039643, 30396338, 303963527, 3039635535, 30396355364, 303963551074, 3039635509269, 30396355092700, 303963550926732, 3039635509266675, 30396355092702331, 303963550927021020
Offset: 1

Views

Author

Frank M Jackson, Jun 18 2016

Keywords

Comments

Empirically, the limit of a(n)/10^n tends to 3/Pi^2 (A104141) and implies that the asymptotic density of squarefree numbers congruent to {1, 2, 3} mod 8 is half that of the asymptotic density of all squarefree integers (A071172). When this sequence is compared with squarefree numbers congruent to {5, 6, 7} mod 8 (A274264) it contains slightly fewer squarefree integers at each of the sampling points, 10^n for n > 1. It can be argued heuristically that, as {1, 2, 3} mod 8 contains a square residue, its equivalence class should contain fewer squarefree numbers.
Also it has been shown, conditional on the Birch Swinnerton-Dyer conjecture, that all squarefree integers congruent to {5, 6, 7} mod 8 (A273929) are primitive congruent numbers (A006991). However, this property applies only sparsely to squarefree integers congruent to {1, 2, 3} mod 8 (A062695).

Crossrefs

Programs

  • Mathematica
    Table[Length@Select[Range[10^n], MemberQ[{1, 2, 3}, Mod[#, 8]]&&SquareFreeQ[#] &], {n, 1, 8}]

Extensions

a(10)-a(11) from Giovanni Resta, Jun 19 2016
a(12)-a(18) from Hiroaki Yamanouchi, Dec 25 2016

A274403 Number of primitive (squarefree) congruent numbers (A006991) <= 10^n.

Original entry on oeis.org

3, 36, 361, 3503, 34065, 332712, 3252966, 31925924
Offset: 1

Views

Author

Frank M Jackson, Jun 20 2016

Keywords

Comments

Conjecture: the limit of a(n)/10^n tends to 3/Pi^2 (A104141). This is based on the assumption, conditional on the Birch Swinnerton-Dyer conjecture, that all squarefree integers congruent to {5, 6, 7} mod 8 (A273929) are a subset of primitive congruent numbers (A006991) and have a natural density of 3/Pi^2. However, squarefree integers congruent to {1, 2, 3} mod 8 are conjecturally sparsely congruent numbers with a natural density of 0. It has been proved without the BSD conjecture that the natural density of congruent numbers is at least 55.9% the natural density of squarefree numbers congruent to {5, 6, 7} mod 8 (see A. Smith link).
The Mathematica program below is a slow implementation of the Tunnell criteria for determining congruent numbers. It will give counts for up to 10^5 in realistic time. Counts for 10^6 and 10^7 have been derived from tables generated by Giovanni Resta (see link).
From Jose Aranda, Jul 04 2024: (Start)
The C++ program I have written calculates a(8) = 31925924 in 75 minutes. The time grows almost exponentially.
Looking at the 8 known terms I think the above conjecture should perhaps refer to A274264 rather than to the present sequence.
From the link "A trillion triangles": "The calculation found of these most mysterious congruent numbers up to a trillion = 3148379694."
That number corresponds to a(10) = 108744287 + A274264(10).
With A274264(10) = 3039635407. Now
3/Pi^2 = 0.303963550927013314...
A274264(08) = 0030396356.
A274264(10) = 003039635407.
A274264(18) = 00303963550927001730.
The sequence A274264 tends to this limit. This sequence may not. (End)

Crossrefs

Programs

  • Mathematica
    CongruentQ[n_] := Module[{x, y, z, ok=False}, (Which[!SquareFreeQ[n], Null[], MemberQ[{5,6,7}, Mod[n, 8]], ok=True, OddQ@n&&Length@Solve[x^2 + 2 y^2 + 8 z^2 == n, {x, y, z}, Integers]==2Length@Solve[x^2+2y^2+32z^2==n, {x, y, z}, Integers], ok=True, EvenQ@n&&Length@Solve[x^2+4y^2+8z^2==n/2, {x, y, z}, Integers]==2Length@Solve[x^2+4y^2+32z^2==n/2, {x, y, z}, Integers], ok=True]; ok)]; Table[Length@Select[Range[10^n], CongruentQ], {n, 1, 5}]

Extensions

a(7) corrected by Frank M Jackson, Jul 25 2016
a(8) from Jose Aranda, Jul 04 2024
Previous Showing 11-16 of 16 results.